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Abstract of the Dissertation

Inferring Mental Workload Changes of Subjects Unfamiliar with a Touch

Screen Game through Physiological and Behavioral Measurements

by

Payam Parsinejad

Doctor of Philosophy in Interdisciplinary Engineering

Northeastern University, June 2016

Rifat Sipahi, Adviser

Many tasks can be demanding for human operators, including operating an aircraft, driv-
ing a vehicle, and making decisions in an air traffic control setting. These tasks, depending on their
complexity, cause increased mental workload on humans, which could then lead to human errors.
Understanding the interaction dynamics between the human operators and tasks requires effectively
detecting and carefully evaluating human mental states. If done successfully, this would help design
ways by which the machine can infer mental states and respond intelligently to the operator in a
way to assist with the objective to reduce the probability of human error in a task.

Even if the operators are experts in many tasks, when they are faced with a challenging
situation they are not familiar with, then their task execution may not be perfect and human error
may still be inevitable. To understand this phenomenon and design an inference scheme to detect it
via a machine, a touch-screen air traffic management game is designed with two unique difficulty
levels, easy and difficult, requiring different mental workload levels. While volunteering subjects
are trained and are hence familiar with the easy level of the game, they are only knowledgeable of
the difficult game without any training experience.

Two main results of this dissertation are as follows: (a) Outcome of the experiments indi-
cates that data collected from subjects’ heart rate and skin conductance as well as subjects’ finger-
stroke patterns on the touch screen can all help flag unfamiliarity of subjects in the difficult game. (b)
Subjects’ behavioral patterns are used to create models using machine learning techniques, whereby
the models can autonomously predict the game difficulty solely by tracking subjects’ movements in
real time. Experiments with newly recruited subjects indicate that such models can indeed predict
what game difficulty the subjects are encountering, even if we have no priori knowledge of the game
level.
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Results obtained in this dissertation point out many future opportunities in synergistic
human-machine systems, and pave the way toward real-time adaptive machines that can perform
inferences to evaluate the probability of a human error in critical tasks, and can in turn provide a set
of assistance modalities to the humans, with the aim to minimize such errors.
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Chapter 1

INTRODUCTION

1.1 Objective of Research

Under excessive mental workload humans have difficulty to process the information they

perceive from the environment. Mental workload can be induced to humans especially when they

encounter unfamiliar situations or they suffer from lack of training in accomplishing a specific

task. Such unfamiliarity or inexperience leads the operators to be prone to error in decision making

which may cause catastrophes and casualties in many scenarios. Therefore, a machine that can

infer subjects’ inexperience in real-time would be valuable, as the machine could provide assistance

when subjects are face with unexpected challenging situations.

Affective computing and analysis of human’s behavioral patterns could help with effec-

tively measuring / evaluating operators’ mental states. Such evaluation schemes can then be im-

plemented in machines along with algorithms, to provide intelligent assistance to the subjects in

real-time (adaptive machine).

The goal of this research is to investigate how certain anomalies in human operators’ phys-

iological measurements and in their behavioral patterns manifest themselves when operators face

with an unfamiliar and a challenging situation, even if operators are experts in doing the same tasks

in a familiar environment. Further, we would like to study whether or not existing tools in affective

computing could be used to identify such inexperience in a timely, efficient and reliable manner. If

this could be done, then the machine could be made intelligent and could detect such anomalies in

real-time, and then respond to humans with some assistance to prevent possible decision making

errors.
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1.2 Background and Problem Statement

Many tasks can be demanding for human operators, including operating an aircraft [131],

driving a vehicle [89], and making decisions in an air traffic control setting [66]. These tasks,

depending on their complexity, cause increased mental workload on humans, which could then lead

to human errors.

“Workload” as an important concept within the field of human factors and ergonomics

[89], is defined as “. . . set of task demands, as operator effort, or as activity or performance” [42].

When interacting with a machine, under excessive “mental workload”, as human operators’ capacity

is limited, they may not be able to fully process information they perceive from the environment. For

example, air traffic control (ATC) is a demanding activity for human operators [16, 98]. This activity

increases mental workload, which could lead to human errors [28]. In contrast, under much lower

mental workload, human operators may experience boredom and they tend to make mistakes [116].

Even if the operators are experts in many tasks, when they are faced with a challenging situation

they are not familiar with, their task execution may not be perfect either, and human error may still

be inevitable. Thus, if mental workload level is at its optimal level, then this is expected to help

human operators improve their performances [58]. With this aim, understanding the interaction

dynamics between the human operators and tasks is necessary, and requires effectively detecting

and carefully evaluating human mental states. If done successfully, this would help design ways by

which the machine can infer mental states [104].

In order to successfully quantify and measure humans’ mental states, various subjective,

and objective measures have been widely used [84, 116]. Subjective methods, such as NASA-TLX

[49] questionnaire, that can perform detailed inferences concerning operators’ mental workload; is

convenient, and easy to practice [84]. However, subjects’ responses may not always correspond to

actual mental state evaluations [84]. And further, they may not accurately reflect human operators’

experiences [128]. The more objective mental workload evaluation schemes such as physiological

measures based on bio-physiological sensors, appear to be more suitable for practical applications

since they can provide a relatively continuous record of data over time [56].

Physiological measurements of human operators’ mental states are aimed at evaluating

the autonomic nervous system (ANS) activity [79]. ANS has two branches: the sympathetic ner-

vous system (SNS) and the parasympathetic nervous system (PNS), which regulate the body’s ma-

jor physiological activities, including the heart’s electrical activity, gland secretion, blood pressure,

and respiration. Moreover, SNS triggers the body’s resources for action under excessive mental
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workload. In contrast, PNS relaxes the body and stabilizes it into steady state [122, 79]. Physio-

logical measurements include brain-related measures, e.g., functional magnetic resonance imaging

(fMRI), electroencephalography (EEG) [43]; eye-related measures, e.g., electrooculography (EOG)

[116]; muscle-related measures, e.g., electromyography (EMG) [108]; heart-related or cardiovascu-

lar measures, e.g., electrocardiography (ECG), blood volume pulse (BVP), [79]; electrodermal ac-

tivity measures, e.g., skin conductance (SC) [13]. Heart rate (HR) and heart rate variability (HRV)

are linked with the state of ANS [122]. To measure HR, a Blood Volume Pulse (BVP) sensor [3]

could be used. The HR data is then processed to calculate HRV [83], where HRV is calculated by

two different techniques: (a) time domain, based on inter-beat interval (IBI) time series [79]; and

in (b) frequency domain, based on spectral analysis of the amplitudes of the IBI signal at various

frequencies. HRV is used extensively in the literature to study mental effort and cognitive work-

load [115, 132, 133]. In general, when subjects are under excessive mental workload, HR increases

[89], and HRV deceases [92, 129], although some exceptions exist [115]. Moreover, galvanic skin

response (GSR) is a measure of the electrical resistance of the skin [13]. When task load increases

-which leads to mental workload increase, sweat glands are activated, increasing skin conductance

[122]. Since the sweat glands are also controlled by the SNS, skin conductance acts as an indicator

for sympathetic activation [122] correlating to cognitive activity [89, 91, 90, 13]. GSR is a widely

used tool for measuring skin conductivity -by utilizing skin conductance (SC) sensor [13]

Affective computing [104] which investigates the correlation between subjects’ mental

states and their performance levels in a task, offers many opportunities for the study of human men-

tal states through physiological sensors [107], such as heart rate (HR) sensor [89, 90], skin conduc-

tance (SC) sensor [118, 90, 89, 50, 107], ECG [115] and EEG sensors [116]. Using measurements

from these sensors, one can infer, for instance, stress [118, 50], cognitive workload [13, 90, 89], and

arousal in subjects [82, 84], as demonstrated in car driving [50, 63, 89], office work-space [118],

as well as in human computer interactions through real-world simulations [90, 66] and computer

games [115, 82, 84, 116]. In [66], for instance, heart rate (HR) and heart rate variability (HRV)

metrics are used to examine cognitive state of human operators during simulated air traffic tasks.

Given the importance of functional state of the human operator to optimal system performance, in

[132], EEG and ECG were used to monitor the functional state of subjects in real time while they

performed the Multi-Attribute Task Battery with two levels of task difficulty. Further, operator func-

tional state assessment in real time led to performance improvement when included in closed loop

adaptive automation with a complex task while subjects performed an uninhabited aerial vehicle

task [134]. The sensitivity of HR and SC as a measure of mental workload was also investigated,
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e.g., in a simulated driving environment [90]. Further, the sensitivity of these measures for differ-

entiating tasks with presumed differences in mental workload were evaluated in real-world driving

tasks [89]. In [115], ECG sensor is used to investigate subjects’ mental states while they play a

simulated air traffic game. In [83, 84], the efficacy of physiological measures, SC, HR, and EMG,

as evaluators of collaborative entertainment technologies, i.e., in commercialized games was tested.

Findings are then followed by [82] where a novel fuzzy logic model method for continuously mod-

eling user emotional state during play experiences through SC, HR, and EMG measurements was

presented.

In all the cited studies, environment, e.g., the game, plays a key role in probing mental

states in order to study human-machine interactions. A large number of studies have shown that

physiological measures such as SC, HR, EMG, can indeed be used to infer emotional and cognitive

responses while humans are playing a game [71]; suggesting that careful design of game environ-

ments can provide a scientific platform to study many aspects of human machine systems.

Another important parameter in this research is regarding a user’s expertise in the game as

investigated in human factors field where many studies were devoted to understand how novices and

experts perform certain tasks [94]. For example, affective computing is used to correlate between

subjects’ mental states and their performance levels in a task [90]. It was reported that the level of

workload experienced while performing a specific task can be affected by the level of experience

and skills of subjects [11, 30], and novice and expert subjects clearly experience different levels

of workload when performing the same task [30]. In [135], HR and respiration measures were

recorded, and the performance of experienced and novice military pilots in a F-7 jet trainer was

investigated; see [11] for an extensive overview on studies utilizing affective computing (EEG,

EOG, and HR) in pilots/drivers.

What we know is that experts generally are able to acquire, integrate and respond to task

related information more efficiently and more effectively than novices [135]. Therefore, expert op-

erators generally have almost perfect task performance, while novices at early stage of skill acquisi-

tion perform less accurately and less efficiently than experts, especially in complicated operational

environments [127]. The aforementioned studies provide rich information regarding how experts

make decisions, what the learning process is in novices as they become proficient with practice,

how novices by practice develop proficiency to better handle such tasks [8], and how one can create

virtual scenarios in order to investigate these research questions from the perspectives of neuro-

science and motor control [34, 35]. With same line of thought, virtual scenarios [35] are also used

in order to investigate how increased task accuracy and performance correlate to training [32], and
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enhance motor skills [52], and how acquired skills are retained over time [30]. In [134], subjects’

lack of training in performing complex tasks has been investigated where inexperienced subjects

benefited considerably much less from computer guided assistance in a game, compared to a group

of subjects who had sufficient experience with the same game [134].

Understanding how a subject responds to situations of unexpected nature, and handles a

scenario with which the subject has little to no experience, is of great importance as this knowledge

could be valuable in many real-world applications involving humans. In such situations, the subject

may fail to rapidly and accurately formulate a decision, and/or rush to make a decision without

properly evaluating all the parameters contributing to the situation. Either way, such decisions may

be poor, or arrive too late, leading to catastrophes. To remedy this, it would be extremely useful to

have a computerized utility that could infer a subject’s inexperience indirectly through mental states

in real-time, and accordingly provide the subject optional decisions, with the aim to alleviate the

subject’s mental workload in this unexpected challenging situation [60] (adaptive aiding).

Adaptive interaction between humans and machines have been envisioned in many studies

[50, 134, 132]. The promise in this direction is to render the machine sensitive to human’s mental

states in order to both create a comfortable experience for the human, and to provide assistance

from the machine to the human whenever the human might need help. For example, affective com-

puting using psychophysiological measures, i.e., EEG, is used to infer mental workload changes in

real-time [132, 134] where a classification algorithms is trained to recognize low and high mental

workload based upon EEG and EOG (blink interval) [132]; and further similar trained algorithms

with EEG and ECG (HR) are used in a game to provide intelligent assistance to improve the perfor-

mance of subjects [134].

Studies with the same line of thought record multiple bio-physiological signals to better

evaluate the mental states of the human operator by combining their individual information [107,

116, 89]. This is simply motivated by the fact that (a) no single physiological measurement could

provide sufficient information to gain insights into human operator mental states [89, 116], and (b)

fusing multiple metrics that correlate with mental workload is practical, and could be used to easily

program a machine to calculate a subject’s mental workload fluctuations [134, 82].

However, bio-sensors are generally sensitive to physical movements [81]. For instance, a

BVP sensor is attached to the tip of the finger using straps. These movements should be avoided

as much as possible so that the process of collecting the raw HR signal and eventually detecting

the individual heartbeat intervals in HRV analysis can be reliably performed. Other factors that

can undesirably affect accurate estimation of HRV from IBI include: errors in data acquisition, and
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miss-detecting heartbeat peaks [10]. In many studies that are concerned with HR sensor artifacts,

errors can be diminished either by reducing the noise within the HR signal, namely, smoothing

with a moving average window, low-pass filtering [81], or designing algorithms to detect errors in

heartbeats and to better extract the IBI [73, 77, 39, 9]. In the cited studies, the IBI error detection

is done by utilizing various post-processing algorithms, which also rely on the analysis of the entire

recorded data. Recently, in [112] an online IBI error detection algorithm is also proposed; the

process is performed in real-time regardless of the HR sensor artifacts, making such an approach

appealing. All the approaches surveyed above are based on the use of IBI data, which is generated

by finding the maxima points in the HR signal; and if it is not performed carefully, significant errors

may be generated in the estimated IBI sequence. Hence, an alternative approach in extracting the

IBI data, for example, an algorithm based on the Short Time Fourier Transform (STFT) would be

beneficial; since it has been shown that analyzing signals, especially when they are embedded in

noise, can be more reliably done using combined 2D time-frequency processing techniques [23,

21]. Moreover, as bio-sensors are generally sensitive to environmental conditions [41], i.e., sensor

movements [81], human operators’ performance [115, 33], if quantifiable, could be used as another

objective indicator of human’s mental state.

There are some limitations observed when affective computing is used to provide real-

time assistance. For instance, the accuracy of the physiologically driven classifier is biased toward

subjects’ proficiency in performing a task in a fixed level [134]. This suggests that optimal adaptive

aiding will be achieved if the capabilities of each subject are determined and used to provide intel-

ligent assistance. Also physiological measures, i.e., HR, fluctuate rapidly in a short amount of time.

This directly affects the performance of the physiologically driven classifier where it produces the

presentation and withdrawal of adaptive aiding at a too-rapid rate [134]. Moreover, analysis of phys-

iological sensors in real-time would require recording of multiple HR cycles before an inference can

be made [12]. This could could be troublesome when a type of assistance is needed quickly. Fi-

nally, physiological measurements of subjects with lack of experience in a task may not correlate

well with training algorithms and real-time detection schemes [134].

Mental workload changes manifested by subjects’ inexperience can also be inferred by

studying subjects’ behavioral patterns. Such patterns are affected when subjects are engaged with

tasks that demand different levels of mental effort. These patterns are correlated with the strategies

subjects develop (or are unable to develop) while trying to cope with task difficulty [132]. Moreover,

if one could relate subjects’ behavioral patterns to subjects’ level of coping with a task, and there

is some evidence supporting this in different contexts [41, 33], this would be a valuable “sensor”
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as such detections can be made much faster with higher bandwidth and in real time, through high-

rate measurements such as via touchscreen mouse clicks and light-weight accelerometers attached

to human body. Some studies already investigated behavioral patterns, especially hand gestures in

touch-screen applications with iPads using subjects’ decision making times [41] and keystroke dy-

namics [33] as metrics with device usability as the research focus; others assessed decision making

times with respect to a number of choices needed to be evaluated by the subjects, see the well-

known Hick-Hyman Law [55, 62] and Fitts Law [38]; and others implemented experimental studies

in which subjects are trained in the tasks to be performed [115, 134, 116].

From the above viewpoint, it is critical to emphasize that behavioral patterns that are dif-

ferent from conventional performance metric have been widely investigated in human computer

interaction (HCI) applications, i.e., in gaming [32, 41, 134, 31], in real-world car driving [89, 107]

and in simulated laboratory setting applications [33, 90, 116, 115, 93]. The reason for this is that

these behavioral patterns are end results of mental workload changes as dictated by inexperience

and/or task difficulty, and are hence only loosely coupled with the specifics of a task being per-

formed. On the other hand, performance metrics are directly and tightly associated with specific

task outcomes as the very nature of definition of performance. Undoubtedly, behavioral patterns

and performance metrics are related, yet these patterns provide higher-level information more di-

rectly related to mental workload and strategy development, and less dependent on the specifics of

a task. This makes the analysis of such patterns attractive, as features of these patterns can be used

directly to study and compare subjects even across different tasks. In this line of thought, “touch

behavior” as an affective modality can indicate affective states of human operator [54], including in

gaming applications [32] and as an indicator of emotions [41].

Although a large body of literature is available encompassing human factors engineering,

affective computing, neuroscience, operational psychology, and human machine systems, to the best

of our knowledge, there exists a number of key scientific problems that were so far not addressed

in the open literature. First of all, making inferences to assess subjects’ inexperience, and using

this inference toward an intelligent machine assistance scheme has so far not been studied. Existing

work focuses on training all subjects in all game tasks, while limiting the training duration, thereby

creating novice vs. expert groups. However, this does not consider the situations of inexperience,

and lack of training in an unexpected situation for which even experts fail to successfully perform.

Moreover, since behavioral patterns of novices during task execution are unpredictable and variable,

while those of experts are more strategic and systematic following consistent patterns, fitting a com-

putational or mathematical model (or training a classifier) on novice subjects’ behavioral patterns is
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challenging, and was not reported to be highly accurate. Moreover, in most of the lab level tasks in

studies mentioned above, the task itself may not be directly linked to real-world applications, i.e.,

arithmetic operations or dual task choices, etc., limiting a subject’s choices, and not allowing sub-

jects to explore their task spaces. Further, while real-world applications using touch-based medium

are becoming ubiquitous, such infrastructure in conjunction with human mental workload via affec-

tive computing have not yet been studied. Furthermore, in many of the cited studies in the area of

adaptive aiding, the fitted model trained based on data for a set of subjects is tested on the very same

subjects, which calls for improvement by studying the models on different subjects. Last but not

least, implementation of a trained classifier or algorithms on a set of new inexperienced subjects’

touch behavior data in real-time has not been explored.

1.3 Significance of this Research

Motivated by the above discussions the three main aims of this research are to:

• carefully infer the mental workload changes of human operator using well known affective

computing tools (subjective and objective measurements) such as physiological measure-

ments as well as behavioral and performance metrics, while keeping subjects’ inexperience

as the key parameter.

• test and verify the reliability of the touch behavior measurements as an indicator of human

subjects’ mental states by using known subjective and objective mental workload evaluation

techniques, i.e., affective computing tools, performance, and decision making times.

• use different classification techniques which are trained using different sets of human subjects,

verify the sensitivity of such trained classifier based on touched based behavioral pattern in

real-time on different sets of subjects.

If successful, results obtained from this research will add to the knowledge pool toward

real-time adaptive machines that can perform inferences to evaluate the probability of a human error

in critical tasks, e.g., whenever workload exceeds a certain threshold, to regulate machine behavior

and further provide a set of assistance modalities to the humans, with the aim to reduce humans

operators’ mental workload and to minimize such errors. The main aims of this research will be

accomplished by delivering the following steps:
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• Design and develop an open source air traffic (AT) game as well as a strategic experimental

protocol which could elicit different levels of mental workload by probing the inexperience

aspect of volunteering human subjects. The game should meet the scientific aspects of game

design of virtual environments, with elements relevant in real-world applications where hu-

man interacts with a machine, for example in air traffic control management [87].

• Procure and incorporate the bio-physiological sensors, i.e., BVP and SC, which are non-

invasively attached to human body, into our open source game.

• Use known affective computing tools to infer and quantify human’s mental workload using

the sensor readings and performance metrics (touch behavior) as an indicator of subjects’

inexperience with a game while the subjects transition from a well-known task to a task they

are not experienced within the game.

• With the advantage of recording BVP and SC data, fuse these sensory data together in order to

better evaluate human operator mental states without any complex training procedures. Verify

this new method on a set of new subjects.

• Design ways by which HRV metric can be estimated even without computing IBI time series,

and regardless of existence of noise in sensory data acquisition.

• Assess and analyze human subjects’ behavioral patterns by using known and proposing new

measurements which are directly related to subjects performance, effort, and decision making

times in the AT game in order to detect the effect of inexperience with game difficulty on

human subjects’ performance, and further to study inexperienced subjects’ mental workload

changes.

• Develop training (calibration) models using the touch based behavioral measures and use

these models in experiments with new subjects to infer subject’s inexperience in real-time.

Test the sensitivity of the model and develop techniques to re-construct the associated tasks

with certain reliability.

1.4 Structure of Dissertation

This dissertation is structured in the following manner:
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Chapter 2 provides an overview of affective computing tools. Further, it describes the

basic properties of some physiological signals, specifically heart rate and electrodermal activity

related signals in relation with autonomic nervous system (ANS), ways to quantify and extract

known features from these signals, followed by the detailed background on the use of these tools.

Chapter 3 describes the experimental methods followed in this research, from the design

and development of a game eliciting mental workload (air traffic (AT) game) to the mechanism of

signal acquisition. Experimental protocol, procedures and the pool of the subjects follow.

Chapter 4 presents the results of the NASA-TLX, and BVP and SC features analysis;

the total of four important features extracted from the signals, in inferring the changes in mental

workload manifested by subjects’ inexperience in the game. Further, we propose a new metric,

called combined metric score (CMS) as the result of fusing the BVP and SC features, and we

investigate how well this new metric is able to distinguish different levels of mental workload on

different human subjects.

In Chapter 5 we introduce a new approach to accurately calculate a metric called pNN50

from noisy BVP signals. This approach is demonstrated first on synthetic noisy signals and next on

BVP signals measured in Chapter 4. Results and effectiveness of the approach are then quantita-

tively assessed.

In Chapter 6 we introduce behavioral metrics as the results of subjects’ interaction with a

touch monitor. The power of the proposed behavioral metrics in differentiating different levels of

the mental workload is investigated by comparing it with physiological metrics (HRV), NASA-TLX

scores as well as task performance metrics that are established and studied in Chapter 4.

Finally, in Chapter 7, we use touch based behavioral measures that are verified in Chapter

6 to train a model (calibration) to infer subject’s inexperience in real-time. We use the well known

classifier techniques used in the field of human factors and human computer interaction. After

finding the best calibrated method which holds the least error in classification results, we test its

sensitivity in new sets of experiments with different subjects (re-construction). Further we present

the preliminary results of the analysis in order to improve the performance of the classifier in dis-

tinguishing the touch based measures in different levels of the game (re-configuration) based on the

variability characteristics of the classifiers.

The summary of significant achievements of this research along with the future research

directions are presented in Chapter 8.
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BACKGROUND: AFFECTIVE

COMPUTING TOOLS

This chapter provides the background information for this dissertation topic. It begins

with the introduction of the affective computing concepts, followed by the description of the au-

tonomic nervous system (ANS), which controls the physiological response related to a subject’s

mental states. Next section presents selected examples of prior work in recognizing mental work-

load from physiological changes. This chapter also presents two different types of physiological

signals used in this research for the purpose of affective sensing: the galvanic skin response (GSR)

or electrodermal activity, and the blood volume pulse (BVP). The final section shows some examples

of other prior investigations related to experiments designed to detect emotion from physiological

signals.

2.1 Affective Computing

In the field of Human Machine/Computer Interctions (HMI/HCI), affective computing

[104] is the exploration of methods that enable computer systems to sense and adapt to the affective

state of human subjects. Affective computing involves not only emotion detection, but also extends

to the implementation of emotions, and attempts to give the computer the ability to recognize and

express emotions. Initially proposed by Hudlicka [60], three key components in the affective com-

puting process are identified [6]: (i) Affect Sensing and Recognition, (ii) User Affect Modeling /

Machine Affect Modeling; and (iii) Machine Affect Expression.
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From the figure above, it is clear that affective sensing is a core aspect of affective com-

puting in general. A variety of approaches have been proposed to meet the challenge of affect

recognition, including the use of psychophysiological measures.

This dissertation focuses on affective reorganization by monitoring of psychophysiologi-

cal signals, with the advantage that they reflect autonomic nervous system (ANS) reactions and are

thus difficult to intentionally distort or supress.

2.2 Autonomous Nervous System

The autonomic nervous system (ANS) regulates the body’s major physiological activities

to helps human adapt to changes in the environment [122]. The ANS affects organs, such as heart’s

electrical activity, gland secretion, blood pressure, and respiration. In addition, the ANS activity

mediates stress responses and emotional arousal.

The ANS has two branches: (i) the sympathetic nervous system (SNS), and (ii) the

parasympathetic nervous system (PNS). The SNS mobilizes the bodys resources for action under

stressful conditions. When fully activated, this division readies the body for a crisis that may require

sudden, intense physical activity, which is commonly known as the “fight-or-flight” response, and

corresponds with arousal and energy generation. In contrast to the SNS, the PNS relaxes the body

and stabilizes the body into steady state. This division stimulates visceral activity and is associated

with the relaxation of the body, which is known as a “rest and digest” response [79].

The autonomic nervous system (ANS) has a direct effects peripheral physiological re-

sponse in individuals, such as skin resistance, heart rate, digestion, respiration rate, breathing, and

etc.. For example, The normal rhythm of the heart is controlled by membrane processes of the

cardiac sinoatrial (SA) node, which are modulated by innervation from both the sympathetic and

parasympathetic divisions of the autonomic nervous system [18, 76]. Therefore, It is critical to

measure and monitor the physiological signals to detect a human subjects’ affective state.

2.3 Physiological Signals

2.3.1 Skin Electrodermal Activity

Electrodermal activity refers to the electrical properties of the skin. Also called the gal-

vanic skin response (GSR) is easily measured as either skin resistivity or skin conductance, although
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the most common use is as a measure of skin conductance [13]. Electrodermal activity is one of the

most commonly used physiological responses in psychophysiological research and in computing

systems that integrate body responses [29].

The electrodermal response is divided into two main types: (i) the tonic baseline and (ii)

the short term phasic responses on the baseline [120, 84]. The tonic baseline refers to the general

conductance of the skin (which is measured in this work), while the phasic responses are deviations

from the baseline resulting from a stimulus [13]. There are specific sweat glands, called the eccrine

sweat glands, which are used for measuring GSR [36]. Located in the palms of the hands and

soles of the feet, these sweat glands respond to psychic stimulation instead of simply to temperature

changes in the body [74].

Skin conductance response is correlated to changes in cognitive activity [13] as well as

arousal [75], and has been used as an indicator of mental workload in many applications [89, 90]. It

is considered the most sensitive response used in the detection of deception (lie detectors) [13].

Devices used to measure skin conductance come is a wide range [13]. Interests in using

“wearable devices” have been increased in recently [105]. The MIT Media Lab has designed a glove

called the galvactivator, GSR rings and bracelets, and GSR shoes [106]. For scientific research,

Thought Technologies produces a number of physiological sensor units and the accompanying skin

conductance sensor. In this study, skin conductance is measured by using surface electrodes sewn

in straps that were placed around two fingers on the same hand, see Section 3.2.2.3. It is known that

finger clips were as responsive to skin conductance response as on the feet [85, 74].

2.3.2 Skin Conductance Features

SC measurement can be analyzed following the studies in [36, 29, 13]. Important features

of Skin Conductance include the DC level, or Skin conductance level (SCL), which is the tonic

level of electrical conductivity of the screen [29]. The mean SCL, which is the average of skin

conductance response over a period of time. It is common for SCL to gradually decrease while sub-

jects are at rest [29], rapidly increase when novel stimulation is introduced [13], and then gradually

decrease again after the stimulus is repeated. SCL is reported to increase with increase in cognitive

load and task demand [89, 90].

The distinctive short waveforms (SCR), Figure 2.1, is usually called the skin conductance

response (SCR) and is considered to be useful as it signifies a response to internal/external stimuli

[13, 69]. Some SCR important features are: SCR amplitude, which increase in conductance shortly
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Figure 2.1: Ideal Skin Conductance Response with typical computed features.

following stimulus onset [29]; SCR latency, which is the temporal interval between stimulus onset

and SCR initiation; SCR rise time, which is the temporal interval between SCR initiation and SCR

peak; and SCR half recovery time, which is the temporal interval between SCR peak and point of

63% recovery of SCR amplitude.

2.3.3 Cardiovascular System: Blood Volume and Pulse Volume

The organs that regulate blood flow through the body are the cardiovascular system. Mea-

sures of cardiovascular activity include heart rate (HR), interbeat interval (IBI), heart rate variability

(HRV). Heart rate indicates the number of heart beats each minute, HRV refers to the changes of

the interval between consecutive heartbeats, BVP refers to the amount and timing of blood flowing

through the periphery of an individual. In this work, HR and further HRV are analyses by measuring

the BVP.

BVP is measured using a plethysmograph [3], which relies on the optical properties of the

tissues for example, finger [120]. In this technique, a light source is passed through the tissue, and

the amount of light bounced back is measured by a photoelectric transducer [120, 3]

The cardiac cycle in BVP signal have two main periods, (i) systole and (ii) diastole, Figure

2.2. Systole corresponds to the period where the heart contracts and expels the arterial blood to the

arteries, and diastole to the period where the heart is relaxed and receives venous blood from the
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Figure 2.2: Sample of the BVP (PPG) Signal Recorded in our Laboratory.

veins. Since the amount of light that is detected by a BVP sensor is proportional to the volume of

blood arriving from the heart in each moment, it is easy to understand that these periods will cause

different levels of light detection [46].

Heart rate (HR) indicates the number of contractions of the heart each minute. HR has been used

to differentiate between different levels of mental workload [91, 90].

Heart rate variability (HRV) refers to temporal variation in the intervals between consecutive

heartbeats in sinus rhythm. It is found that heart rate irregularity is gradually supressed when task

difficulty in creases [67]. HRV has been used extensively as an indication of mental effort and stress

in adults. In high stress environments such as air traffic control [115], HRV is found to be a very

useful measure. When subjects are under stress, HRV is suppressed and when they are relaxed,

HRV emerges [82]. Similarly, HRV decreases with increases in mental effort [115] and cognitive

workload [129], but as the mental effort needed for a task increases beyond the capacity of working

memory, HRV will increase [114, 115]. Many researchers have found significant differences in

HRV as a function of mental workload (meshkati1988heart, mulder1979sinusarrhythmia).

2.3.4 HR and HRV Features

Data series used in HR/HRV analysis are time series containing beat-to-beat intervals

(IBI) extracted from BVP signal. Figure 2.3 shows a hypothetical BVP signal and and how IBI’s are

determined based on the consecutive heart beats. NNk and NNk+1 represent the kth and (k+ 1)th
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data point of the IBI time series signal. The IBI time series of an BVP segment containing n beats

is given by

IBIk = NNk+1 −NNk, : 1 ≤ k ≤ n (2.1)

where NNk is the time location of the kth beat.
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Figure 2.3: Determination of IBI.

Pre-processing of IBI time series data is frequently required before HRV analysis to

reduce analysis errors. The three primary types of IBI pre-processing are ectopic beat/interval

correction[125], detrending [136], and IBI re-sampling [119], see after [111].

HR and HRV analysis can be categorized into (i) time-domain and (ii) frequency-domain

analysis: In time domain analysis, from the pre-processed IBI time series a number of parameters

are calculated [19]: HR:is the average estimation of the heart rate in beats per minutes, which

is known to increase with increasing task demand and mental workload [90, 89]; RMSSD: the

root mean square successive difference of intervals, which is inversely proportional to stress [99];

and pNN50%: the number of successive difference of intervals which differ by more than 50 ms

expressed as a percentage of the total number of BVP cycles analyzed, and is which is significantly

lower in a mental task than during rest [123].

Fluctuations in HR are often thought to be periodic and occurring on many time scales

[25]. Therefore, quantifying these fluctuations within the IBI time series can be done by calculating
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the power spectrum density (PSD). That is, in frequency domain, analysis of HRV is conducted on

the amplitudes of the cardiac interval signal at various frequencies [116]. The HRV power spec-

trum can be classified into three major frequency bands, which are each associated with different

functional influences on the IBI, namely (i) the low-frequency (LF) band (0.02–0.06 Hz), associ-

ated with the regulation of body temperature [19], (2) the mid-frequency (MF) band (0.07–0.14

Hz), associated with the short-term regulation of arterial pressures [19], and (3) the high frequency

(HF) band (0.15–0.50 Hz), reflecting the effects of respiratory activity on the cardiac interval signal

[95]. Many studies showed that an increase in mental effort was typically related to a reduction in

the power associated with the mid-frequency band in the HRV power spectrum, implying a tempo-

rary suppression of normal arterial pressure regulation [1, 95, 126]. The frequency range sensitive to

changes in mental effort is between 0.06 and 0.14Hz [126], while the area between 0.22 and 0.4Hz

reflects activity related to respiration [95, 65]. Integrating the power in the band related to mental

effort provides a measure of HRV [116].

2.3.5 Additional Sensing Modalities

Besides the SC and BVP signals, there are other sensing modalities that can be monitored

for affective sensing, mental workload such as Electroencephalography (EEG), blood pressure (BP),

and Pupillometry (PD), respiration, electromyogram (EMG).

EEG is a technique for recording electrical activity from the scalp related to cortical ac-

tivity which has been successfully demonstrated as an indicator of mental workload in [116, 132].

Pupillometry is the study of the dilation of the pupil [120], which is a useful measure changes in

mental effort [109]. Respiration can be measured as the rate or volume at which an individual ex-

changes air in their lungs. Emotional arousal, and increase in mental workload increases respiration

rate while rest and relaxation decrease respiration rate [120, 129]. Blood pressure indicates how

much pressure is needed to push blood through the system of arteries, veins, and capillaries. Blood

pressure is sensitive to highly stressful situations [120].

2.4 Summary

In this chapter, the affective computing concepts is introduced followed by the basic de-

scription of the autonomic nervous system. Next, the physiological background and the basic prop-

erties of some physiological signals, specifically heart rate and electrodermal activity related signals
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in relation with autonomic nervous system (ANS) are described. We detail ways to quantify and

extract known feature from the physiological sensor data and their correlation with human subjects’

mental workload changes.

We hypothesis that data collected from subjects’ heart rate and skin conductance could

successfully indicate subjects’ inexperience in a unfamiliar situation. If successful, this funding

can serve as a good foundation toward validating the correlation between subject’s touch behavioral

pattern and their performance in familiar/unfamiliar situations (changes in mental workload) with

subjects’ physiological.

In Chapter 3, the experimental setup integrating the software, the sensory measurements

devices and experimental protocol are demonstrated.
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EXPERIMENT DESIGN

The overall goal of this research is to overall goal of this research is to investigate how a

certain anomalies in human operators’ physiological measurements or in their behavioral pattern are

presented when they face with an unfamiliar and a challenging situations, even if they are experts

in doing the same tasks in familiar environment. And further, we would like to study whether or

not there exist tools in affective computing which could be used to identify such inexperience in a

timely, efficient and reliable manner. If this could be done, then the machine could be made smart

and intelligent which can detect such anomalies in real-time and respond to humans with some

assistance to humans to prevents their error.

For this, an experimental setup and a corresponding protocol are defined and implemented

for the study to:

• Provide an appropriate stimulus, capable of eliciting different levels of mental workload in

the subjects who participating in the experiment.

• Record desired biophysiological signals accurately and synchronously while subjects interact

with the machine for further analysis.

• Record the subjects behavioral patterns while interaction with machine.

What follows is complete implementation of the experimental environment together with

the designed software, and the hardware components for sensory data measurements.
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3.1 Software Development:Air Traffic (AT) Game

In line with the main purpose of the research, to induce mental workload on the subjects

who plays interacts with a machine we designed and open-source air traffic (AT) game.

3.1.1 Rationale of the Game Design

In the design of the easy and the difficult levels of the game, the following thought process

was taken. First of all, the difficult game should be challenging and non-trivial such that subjects’

inexperience can truly be probed. This challenge should be based on affecting mental workload

and channel subjects toward complex decision making. Secondly, since for the purpose of this

research the types of real-world tasks cited in the introduction section do not require extensive

physical demand, the game here should not be physically challenging either, e.g., with increased

game speed. Nevertheless, we also do not want to design an extremely slow game where subjects

can take too much time to develop their moves. Hence, some level of time pressure is still needed,

but at a pace reasonable and comfortable for the subjects. We therefore suggest that a good level

of compromise between speed and cognitive load is to create the difficult level of the game without

forcing subjects’ to make rapid decisions but in parallel require them to evaluate the situation, and to

make a decision within a reasonable amount of time considering the time they will need to perceive,

formulate a decision, and act. Furthermore, it is important that the subjects remain engaged, putting

emphasis on playing the game to the best they can.

Accordingly, the main focus in the difficult game is to trigger primarily mental workload

and game performance dimensions with minimal changes in the game speed. Other key considera-

tions include allowing subjects complete degree of freedom in performing the task, without limiting

their hand, arm movements with discrete number of selection options, while at the same time having

the game linked to scenarios with real-world elements, and incorporation of some randomization to

prevent learning.

3.1.2 Game Design

Keeping in mind the rational discussed above, the game can be designed in a number

of unique ways. In this research, our game is inspired from flight control games and resembles

those produced by Firemonkeys Studios, or Flight Control HD as well as air traffic management

tasks found in real-world simulations [115, 16, 66]. For future developments and customization,
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the game is designed as open architecture in MATLAB environment using Psychophysics Toolbox

(PTB) software [14, 103], and was briefly summarized in [101]. PTB interacts between MATLAB

and the computer hardware providing the ability to MATLAB to attain full control of the hardware

in representing various objects in the display. Such approach not only provides us extensive support

for numerical calculations but also allow us to have access to Open Graphics Library (OpenGL)

commands, which are used in designing graphical interactive games and laboratory experiments

[14, 103]. We can also benefit from its flexible and relatively easy to learn environment, provided

by rich and extensive documents, in designing our game. This allows us to further develop and

modify the game as desired.

In the game, the airfield is seen from top, and the airplanes merge into the screen from

random locations with constant speeds and move along random directions. The subject should touch

the screen and draw trajectories for the airplanes to follow and finally land on the runways/landing

areas. The airplanes that land disappear from the screen. The game consists of two different dif-

ficulty levels, namely, easy and difficult. The design of the AT game comes with simple graphics

[48].

• Game Environment (airfield): The size of the game environment is dependent on the size

of the screen and its resolution. This will be realized by using methods provided by PTB in

the beginning of the game.

• Airports: The airports are represented by square objects. The location of the airports are

fixed in the middle of the screen.

• Airplanes: The airports are represented by circle objects. Airplanes always move at a con-

stant speed of 20 pixels/sec. To give a measure of speed, an airplane would need 96 seconds to

horizontally travel from one side to the other side of a screen with a resolution of 1920×1080

pixels. To give a measure of speed, an airplane would need 96 seconds to horizontally travel

from one side to the other side of a screen with a resolution of 1920×1080 pixels.

Airplanes arrives into the screen every three seconds. In the beginning of the game, a variable

is defined by a constant number, here is 3, in unit of second, which governs how often each

airplane merges into the screen. Assume t0 = 0 (beginning of the trial) and merging time for

airplane1, airplane2, and airplane3 are t1, t2, and t3, respectively. In this case we have:

tk+1 − tk = Constant; k = 1, 2, 3 . . . n. (3.1)
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Further, the direction and positions of the airplanes at the time of entrance into the screen

are randomized accordingly, based on which side of the screen they enter the screen, Figure

3.1. However, no two consecutive airplanes enter from the same side. Moreover, airplanes

entering the screen are programmed to move toward the center of the screen. Therefore, no

airplane exits the screen quickly, and subjects have enough time to set trajectories for the

airplanes.

In order to calculate the direction, we randomly choose a location within the screen (ending

location), calculate the line equation passes through the starting and ending locations. By

calculating the slope of the line we get the direction, along which the airplane moves. To avoid

the situation at which two or more airplanes arrives into the screen from one location, with

the following technique, the arrival point of the consecutive airplanes are randomly changes

around the screen.

Figure 3.1: Random location generator.

Random location generator divides outside of the screen into 12 sections and also divides inside the

screen (game environment) into 4 sections. The blue numbers are the labels for each starting zone

and the red numbers are the labels for each ending zone. Two random locations are picked within a

starting and ending zone to define the merge of each airplane into the screen from a starting location

and to an ending location.

First, the outside of the screen is divided into twelve sections (starting zone). The area inside

the screen is also divided into four sections (ending zone). We labeled each section within

starting and ending zones. Two sections as starting and ending zones are randomly selected
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and then within each area, a random location is chosen. The two locations are assigned

to an airplane. Therefore, airplane starts moving from a point in starting zone and follows a

straight line ends somewhere in ending zone. The last starting zone label will be remembered.

Hence, for the next airplane emerging into the screen another starting location will be selected

randomly.

• Human Interaction (Drawing Trajectories): A trajectory can be generated for an airplane

only by the human subject, by touching one airplane at a time on the screen. A trajectory is

assigned if it is drawn from an airplane location and ends in the vicinity of a runway, otherwise

it is un-assigned. When the human subject is drawing a trajectory for an airplane, the airplane

follows that new trajectory without changing its speed. Once a trajectory is successfully

assigned, the airplane will then follow the shortest path towards its assigned runway.

A trajectory can be generated for an airplane only by the human subject, by touching one

airplane at a time on the screen. A trajectory is assigned if it is drawn from an airplane location and

ends in the vicinity of a runway, otherwise it is un-assigned. When the human subject is drawing

a trajectory for an airplane, the airplane follows that new trajectory without changing its speed.

Once a trajectory is successfully assigned, the airplane will then follow the shortest path towards

its assigned runway. When a subject fails to assign an airplane to the runway, he/she can take

multiple trials to re-assign the airplane correctly. Once an airplane is assigned, its color turns “blue”

indicating that this airplane is already assigned. Finally, the subjects are not instructed to prevent

crash, and airplanes may cross through each other without any consequences. If left un-assigned

airplanes leave the screen they will disappear and they will not bounce back.

3.1.3 Eliciting Mental Workload

To elicit different levels of mental workload induced to human subjects, the game consists

of two different difficulty levels, namely, easy and difficult, Figs. 3.2a–3.2b. To create two distinct

levels of difficulty in the game, the following concepts are implemented “only” in the difficult level

(Figure 3.2b) of AT game:

• Stroop Color-Word Interference Test [121]. Three airports are displayed on the screen, and

each one has a different color with the text of one of the color names written on each airport

but not necessarily the one matching with the airport color. In other words, a color name

can match with the airport color by chance. The subject has to assign the colored airplanes
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(a) Easy level.

Airplanes (circles) are in white colors, and an assigned

one is blue. Airports (squares) are in white color

with text “white”. “Red” and “Blue” dashed arrows

are sample assigned and un-assigned trajectories,

respectively, just to explain the concept. Subjects

when playing the game do not see these trajectories.

(b) Difficult level.

Airplanes (circles) are in different colors. Airports

(squares) are in different colors with different texts that

switch randomly at a comfortable pace. Color indica-

tors appear randomly on any two corners of the screen

(small squares). “Red” and “Blue” dashed arrows are

sample assigned and un-assigned trajectories, respec-

tively, just to explain the concept. Subjects when play-

ing the game do not see these trajectories.

Figure 3.2: Different levels of AT game.

to an airport with the matching text. The color markers, and texts on the airports switch

randomly either after each trajectory assignment or five seconds after previous switch, to

prevent learning, and to keep the challenge steady.

• As we noticed while piloting the game, the subjects prefer to heavily focus on the center of

the screen, without paying attention to all the information displayed on the screen. To prevent

this to happen, and to also distract the subjects, two small rectangles with different colors

are displayed in two randomly selected corners of the screen. The subject should keep track

of these two color indicators, and select the airplane with the color that is not indicated by

the color indicators. With this setting, the subject has to also pay attention to the corners of

the screen. These “indicators” appear on the screen in synchrony with the stroop color-word

interference scheme described above. Whenever they switch, their locations and colors may

also randomly change.

24



www.manaraa.com

CHAPTER 3. EXPERIMENT DESIGN

• An audio effect is played 2–3 seconds before the color indicators change their locations, in

order to alert the user to select an airplane. This is expected to add higher physiological

arousal [124], increased stress [51], and heart rate [72].

3.1.4 Scenario

To summarize, the two difficulty levels of the game are as follows:

• Easy: Arriving airplanes are in white color, merging into the screen from random locations

with constant speeds and move along random straight trajectories. Three landing areas are

presented with white background color and with text “white”. The subject can select any

airplanes and draw a trajectory toward any of the three runways (Figure 3.2a).

• Difficult: Different from the easy level, here (i) airports have different colors, Figure 3.2b;

(ii) stroop test is active; (iii) color indicators must be followed to decide which color airplane

can be selected; and (iv) an audio warning is played.

Throughout the game, the locations and the number of airports remain fixed. Also in both

levels of the game, once an airplane is assigned, its color turns “blue” indicating that this airplane is

already assigned. Finally, the subjects are not instructed to prevent crash, and airplanes may cross

through each other without any crashes.

3.2 Hardware Setup Design

The experiments are performed using a Dell PC machine running a 32 bit Windows 7

operating system. In following the hardware setup components, namely, the display monitor, and

the physiological measurement setup are detailed.

3.2.1 Presenting the Stimuli: Touch-Screen Display

The At game requires subjects navigate the airplanes to the airport by touching the screen,

drawing a trajectory for the selected airplane throughout the game play. In order to have such

interaction dynamic, a 21.5 DellTM ST2220T multi-touch monitor with 1920×1080 resolution, and

at 60 Hz frame-rate is used for displaying the game is provided for our experimental setup.
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3.2.2 Physiological Measurement System

The goal of the systems designed in this research is to provide a continuous digital signal

recording of the physiological variables monitored for analysis. In order to record the affective

response of the skin conductance and blood volume pulse data a hardware system was integrated

in order to record the physiological signals clearly and accurately. The physiological measurement

system is utilized in the experiments is composed of four sub-systems: (i) the encoder, (ii) the blood

volume pulse sensor, (i) the skin conductance sensor, and (iv) an API to embed the sensory data

recording within the AT game.

3.2.2.1 ProComp5 Infinity Encoder

ProComp5 Infinity Encoder produced by Thought Technology Ltd1 is used to record the

seignals for the experiment. The microprocessor-powered encoder, Figure 3.3, has 5 protected pin

sensor inputs; 2 channels that read data at 2048 samples/second (channels A and B), and 3 channels

that read it at 256 samples/second (channels C, D and E). It is able to render a wide and comprehen-

sive range of objective physiological signals used in clinical observation and biofeedback, and can

act as an adjunct to client evaluation, assessment, prognosis, and rehabilitation.

Figure 3.3: ProComp5 Infinity Encoder.

ProComp5 Infinity Encoder has 5 channels; 2 channels that read data at 2048 samples/second (chan-

nels A and B), and 3 channels that read it at 256 samples/second (channels C, D and E).

The encoder samples the incoming signals, digitizes, encodes, and transmits the sampled

data to the ProComp Infiniti USB Adapter (TT-USB) unit, Figure 3.4. A fiber optic cable is used
1http://thoughttechnology.com/
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for transmission to the TT-USB, providing maximum freedom of movement, signal fidelity, and

electrical isolation. The TT-USB interface unit is connected to one of the host computer’s USB

ports. It receives the data arriving from the encoder in optical form and converts it into the USB

format to communicate with the software.

Figure 3.4: ProComp Infiniti USB Adapter (TT-USB).

It connects to the fiber optic cable to optically isolate client from the computer.

3.2.2.2 Blood Volume Pulse (BVP) Sensor

The heart rate/blood volume pulse sensor (P/N: SA9308M) is a blood volume pulse (BVP)

detection sensor, also known as a photoplethysmography (PPG) sensor, comes as a small finger worn

package, Figure 3.5. Hence one could measure heart rate (HR), BVP amplitude, BVP waveform,

HR and heart rate variability (HRV) feedback. BVP sensor is connected to the ProComp5 Infiniti

Encoder by protected pin cables, and measure biofeedback responses and send the raw signals to

the encoder. It can be used on all channels of the ProComp5 Infiniti encoder but channels A and B

are preferred because they allow a higher sampling rate.

The BVP sensor does not require skin preparation as it is placed directly in contact with

the skin. The sensor is placed against the fleshy part of the first joint of middle finger and tightened

its position using the elastic strap.
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Figure 3.5: The blood volume pulse sensor.

3.2.2.3 Skin Conductance (SC) Sensor

The Skin Conductance sensor (P/N: SA9309M), is supplied with two finger bands, and

it measures the conductance across the skin, and is normally connected to the fingers or toes, Fig-

ure 3.6. The standard measurement unit for conductance is called Siemens. Skin conductance is

measured in micro-Siemens. Some biofeedback systems display skin conductance in micro-ohms

(µm) which is the inverse of an ohm, and is the measure of resistance. These two measures, µs and

µm, are equivalent. Normal readings, for skin conductance, in a relaxed state are around 2 µs, but

readings can vary greatly with environmental factors and skin type.

Figure 3.6: The skin conductance sensor.

The skin conductance sensor has two short leads that extend from the circuit box. At the

end of each lead is an electrode snap similar to those on the extender cables. The SC sensor uses

two replaceable electrodes that are sewn inside velcro straps. The electrode strap must be fastened

around a finger tightly enough so the electrode surface is in contact with the finger pad but not so

28



www.manaraa.com

CHAPTER 3. EXPERIMENT DESIGN

tightly that it limits blood circulation. No conductive paste should be used on the electrodes. We

need to clean the electrodes with an alcohol wipe between clients. These AG/AG/CL electrode

snaps should be replaced after about 50 uses or when wear is apparent.

3.2.3 Synchronization of Sensory Data within the Game

In order to embed the device (ProComp5 Infinity Encoder) sensory recording into our AT

game within MATLAB environment, the TTL API SDK provided by Thought Technology Ltd.is

mplemented into our software. TTL API provides an interface between encoder and client appli-

cations running on Windows. Most functions are ActiveX-compliant and can be used in a wide

range of windows development environments. TTL API is supported on Windows 2000, XP, Vista

and Windows 7. The SDK includes documentation demonstrating the use of TTL API with numer-

ous windows application platforms (i.e., MATLAB). TTL API consists of two ActiveX-compliant

controls, which allow access to live data streams.

Acquiring the live data from a connected encoder is achieved via the following tasks:

• Create and release a pointer object to interface with the device (encoder) within MATLAB

environment. The live data via this pointer object is acquired.

• Detect and open encoder connection(s).

• Close any unwanted connections.

• Define the encoder enumeration order by assigning an encoder handler. The list of all physical

channels is assessed via an assigned encoder handler.

• Create logical channels corresponding to all encoder physical channels.

• Define which physical channels are active. Active channel is a channel to which a sensor is

connected.

• Synchronously start all active channels to read data from them.

• Retrieve data periodically from all active channels: (i) check how many samples available

(which are stored temporarily in the buffer), and (ii) read the data samples available in the

buffer.

• When finished, close all connections.
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3.2.4 Overall Experimental Setup

In summary, the visual stimuli for the subject (the AT game), described in Section 3.1.2,

is displayed on a A 21.5 DellTM ST2220T multi-touch monitor with 1920 × 1080 resolution and

60 Hz frame-rate is used for displaying the game. While playing the AT game, the subject has the

SC and BVP sensors attached to his/her left hand. The two signals are recorded in Matlab at rate

of 256–1024 samples/second by using a multi-channel DAQ system (ProComp5 Infinity Encoder).

Participant is wearing a headphone to hear auditatory alarm sound played during the game. Fig 3.7

shows a subject playing the game while he is wearing a headphone, and SC and BVP sensors are

attached to him during the experiment.

Figure 3.7: Prof. Sipahi demonstrates the game.

3.3 Pool of Experimental Subjects

Four sets of experiments are conducted.

• Experiment One (Data Set 1): In the first experiments, thirteen subjects (1 female and 12

male; age = 26.5± 2.3) participated in the first experiment [101].

• Experiment Two (Data Set 2): After approximately six weeks later, twelve of the 13 same

subjects (1 female and 11 male) with a mean age of 26.4±2.4 years, again participated in the

experiments with the same experimental protocol (Data Set 2).
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• Experiment Three (Data Set 3): Another twelve subjects (4 female and 8 male) with a mean

age of 24.7±3.3 years participate in the third experiment with slight difference in experiment

protocol as explained in Section 3.4.

• Experiment Four (Data Set 4): Eleven subjects (6 female and 5 male) with a mean age of

24.18 ± 2.27 years participate in the fourth experiment following the porotocol as explained

in Section 3.4.

All the subjects were from diverse ethnic backgrounds. Due to the nature of the tasks, the

following considerations were made when choosing the participants:

• Participants had to be fluent in English (to avoid difficulty in understanding the instructions

for the computer game).

• Participants should have good general health (no hearing or sensing problems).

• All of the participants were right-handed.

All the subjects reported that they have prior experience in playing computer games.

While this does not specifically express what type of game they had experience with, subjects hav-

ing had prior experience with computer games indicates that they may have some familiarity with

similar games.

3.4 Experimental Protocol

The subjects sit comfortably in front of the touch monitor, which is positioned vertically.

Prior to the experiment, each subject plays the easy level of the game for two minutes to practice the

game environment, the touch monitor, and drawing trajectories. With this, all subjects are expected

to reach the same level of proficiency in the easy game level. Moreover, all the subjects are also

instructed and presented with visual elements the rules and challenges of the difficult game, to

familiarize them with this game level. This briefing is necessary because the rules in the difficult

game are so unique that the subjects need to know what they will be facing and how to handle the

challenges of the game. Specifically, here screen shots of the game levels, similar to Figure 3.2 are

shown to the subjects, to explain them the conditions when decisions are correct or wrong including

the rules of color indicators switching their positions and their colors; and on how to assign the

airplanes to the runways. Experimental personnel also confirms that the subjects learn the rules
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by asking them questions on how to play the difficult game. Subjects however do not practice the

difficult game.

We should note that all the subjects in Data Set 2 have past experience playing both game

levels (from Data Set 1) under identical experimental protocol [101]. In other words, each subject

in Data Set 2 had played 2 sessions of the easy game and 1 session of the difficult game already in

Data Set 1. Six weeks later, on average, Data Set 2 was collected. We assume that subjects in Data

Set 2 have not retained much of their experiences with the difficult game, and can also be deemed

inexperienced with the difficult game. All the subjects in Data Set 3 have had no prior experience

with any of the games. The reasoning behind the order of game segments is as follows: (i) Firstly, to

reset and stabilize subjects’ physiological states, all participants relaxed during R1. (ii) In many real

world scenarios, subjects will be managing their tasks comfortably until a challenging scenario is

encountered. Analogously, it is therefore of interest to understand the transition from an easy game

to a difficult one, i.e., from E1 to D (Data Sets 1–2), and further the transition from a challenging

scenario to a relaxing one, i.e., from D to E1 (Data Set 3). (iii) It is of strong interest to compare

subjects’ physiological states and performance in both easy games, and investigate whether or not

the difficult game has any left over impact on the subsequent easy game. (iv) Lastly, it is of interest

to study whether or not subjects’ specific physiological states and performance found in the difficult

level or in E1 are independent of the game order. In this manuscript, we will focus on the research

questions (ii)–(iv) related to subjects’ active play time.

In Data Set 4, subjects are instructed to play the game 10 times (trials), where in each

trial, each subject plays one easy and one difficult game. Similar to Data Sets 1–3, each game lasts

1 minutes. In each trial, the order of the games are randomly defined. In other words, the subjects

are not familiar with the order of the game. For example, at 1st trial one plays easy game first, and

then difficult level, and in the second trial, he/she might play the game with the same order or not.

This continues till the 10th (last) trial. Similar to Data Set 2, the participants are not instructed to fill

out the NASA-TLX questionnaire. Also no bio-physiological data (BVP, SC) is recorded in Data

Set 4.

3.5 Summary

This chapter describes the development and designing software, AT game, and integrat-

ing it with designated hardware of a experimental setup which is capable of (i) providing reliable

stimulation to elicit different levels of mental workload in subjects, and (ii) record the two physio-
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logical signals, namely SC and BVP, that are used to provide comparison of the mental workload

recognition performance. The experimental procedure and pool of subjects were also described.

In Chapter 4 the data analysis tools are demonstrated, followed by results of the analysis

of the recording sensory data in order to understand how successful bio-physiological data are in

inferring and differentiating the different levels of mental workload.
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Chapter 4

ANALYSIS OF EXPERIMENTAL

RESULTS

4.1 Introuduction

Affective computing [104] offers many opportunities for the study of human mental states

through physiological sensors [107], such as heart rate (HR) sensor [89, 90], skin conductance (SC)

sensor [118, 90, 89, 50, 107], ECG [115] and EEG sensors [116]. Using measurements from these

sensors, one can infer, for instance, stress [118, 50], cognitive workload [13, 90, 89], and arousal

in subjects [82, 84], as demonstrated in car driving [50, 63, 89], office work-space [118], as well

as in human computer interactions through real-world simulations [90, 66] and computer games

[115, 82, 84, 116]. In [66], for instance, heart rate (HR) and heart rate variability (HRV) metrics

are used to examine cognitive state of human operators during simulated air traffic tasks. Given the

importance of functional state of the human operator to optimal system performance, in [132], EEG

and ECG were used to monitor the functional state of subjects in real time while they performed

the Multi-Attribute Task Battery with two levels of task difficulty. Further, operator functional state

assessment in real time led to performance improvement when included in closed loop adaptive

automation with a complex task while subjects performed an uninhabited aerial vehicle task [134].

The sensitivity of HR and SC as a measure of mental workload was also investigated, e.g., in a sim-

ulated driving environment [90]. Further, the sensitivity of these measures for differentiating tasks

with presumed differences in mental workload were evaluated in real-world driving tasks [89]. In

[115], ECG sensor is used to investigate subjects’ mental states while they play a simulated air
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traffic game. In [83, 84], the efficacy of SC, HR, and EMG as evaluators of collaborative entertain-

ment technologies, i.e., in commercialized games, was tested. Findings are then followed by [82]

where a novel fuzzy logic model method for continuously modeling user emotional state during

play experiences through SC, HR, and EMG measurements was presented.

In all the cited studies, environment, e.g., the game, plays a key role in probing mental

states in order to study human-machine interactions. A large number of studies have shown that

physiological measures such as SC, HR, EMG, can indeed be used to infer emotional and cognitive

responses while humans are playing a game [71]; suggesting that careful design of game environ-

ments can provide a scientific platform to study many aspects of human machine systems.

Many studies in neuroscience and human factors fields regarding a user’s expertise in

the game were devoted to the investigation of how novices and experts perform certain tasks [94].

Along these lines, studies utilize affective computing tools, and investigate the correlation between

subjects’ mental states and their performance levels in a task. It was reported that the level of

workload experienced while performing a specific task can be affected by the level of experience

and skills of subjects [11]. For example, novice and expert subjects clearly experience different

levels of workload when performing the same task [30]. In [135], HR and respiration measures

were recorded, and the performance of experienced and novice military pilots in a F-7 jet trainer

was investigated; see [11] for an extensive overview on studies utilizing affective computing in

pilots/drivers. What we know is that experts generally are able to acquire, integrate and respond

to task-related information more efficiently and more effectively than novices [135]. Therefore,

expert operators generally have almost perfect task performance, while novices at early stage of

skill acquisition perform less accurately and less efficiently than experts, especially in complicated

operational environments [127].

The aforementioned studies provide rich information regarding how experts make deci-

sions, what the learning process is in novices as they become proficient with practice, how novices

by practice develop proficiency to better handle such tasks [8], and how one can create virtual sce-

narios in order to investigate these research questions from the perspectives of neuroscience and

motor control [34, 35]. In summary, the cited studies are based on an overarching research question

that seeks to put light on how increased task accuracy and performance correlate to training [32],

and enhance motor skills [52], and how acquired skills are retained over time [30].

Another research question of strong interest, and is complimentary to the above, is the

investigation of subjects’ lack of training in complex tasks. This is in line with a recent study

where inexperienced subjects benefited considerably much less from computer guided assistance in
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a game, compared to a group of subjects who had sufficient experience with the same game [134].

Understanding therefore how a subject responds to situations of unexpected nature, and handles a

scenario with which the subject has little to no experience, is of great importance as this knowledge

could be valuable in many real-world applications involving humans. In such situations, the subject

may fail to rapidly and accurately formulate a decision, and/or rush to make a decision without

properly evaluating all the parameters contributing to the situation. Either way, such decisions may

be poor, or arrive too late, leading to catastrophes. For these reasons, it would be extremely useful

to have a computerized utility that could infer a subject’s inexperience indirectly through mental

states in real time, and accordingly provide the subject optional decisions, with the aim to alleviate

the subject’s mental workload in this unexpected challenging situation. This research is motivated

by these observations.

In order to grasp the fundamentals of the above described problem, here, we first focus

on the forward problem of analyzing subjects’ inexperience with a challenging game as the subjects

transition from a well-known task in the game to a task they are not experienced with. For this, we

take an affective computing approach and utilize a type of air traffic (AT) game on a touch screen,

developed by our team, aiming to capture a human-machine interaction scenario. Specifically, we

report human-subjects experiments based on two levels of difficulty, easy vs. difficult, where sub-

jects hands-on practiced the easy game level, but only received a briefing with visual elements

regarding the rules of the difficult level.

Besides affective computing tools, the study here also utilizes post-experimental NASA-

TLX surveys to assess subjects’ perceived mental workload in the game, post calculates various

metrics from HR and SC sensors collected in real time as the subjects played the game, and devel-

ops correlations between these metrics as well as with subjects’ game performance. Moreover, a

combined metric score (CMS) is presented, which combines the metrics all together under a single

scalar indicator, with the aim to relate this indicator to subjects’ inexperience as manifested through

their mental workload changes at the face of a challenging task. CMS is calibrated on a data set cor-

responding to a group of subjects, and validated with statistical significance in separate experiments

both on the very same subjects and on different subjects.

First, we review the physiological indicators of mental workload followed by discussion

on prior work related to affective computing. In the subsequent section, we summarize our AT game

design concept and experimental protocol, and summarized the data analysis tools utilized in this

manuscript. Experimental results, statistical analysis, CMS formulation, and comparisons among

data sets are provided next. The article ends with discussions, conclusions, and future research
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directions.

In Chapter 3, we detailed about are experimental setup. In there, we introduced our AT

game, see Section 3.1, followed by our experimental design and procedure. In following sections,

we introduce our data analysis tools in order to analyze the recorded bio-physiological signals,

namely BVP and SC. Next we will investigate how the results of the analysis improve if we fuse

the sensory data together. We define a new measurement, combined metric score (CMS), as a

combination of 3 different heart related measures with 1 electrodermal activity related feature. This

chapter ends with our conclusion on how well CMS metric could infer subjects’ mental workload

level when they play the game.

4.2 Data Analysis Tools

Two standard sensors, namely skin conductance (SC: Thought Technologies - model

SA9309M) and blood volume pulse (BVP: Thought Technologies - model SA9308M) sensors were

utilized. The sensor data were recorded at a rate of 256 samples per second in Data Set 1, and 2048

samples per second in Data Sets 2–3. While 256Hz sampling is more than sufficient for physiolog-

ical measurements, we chose 2048HZ to enhance the resolution of the HRV, inspired from [19]. In

all data sets, the SC signal is down sampled to 60 Hz for further analysis, which is satisfactory as

sampling rates as low as 1 Hz are acceptable [13] for studying SCL.

Prior to analyzing the recorded data, in order to eliminate the artifacts, such as high fre-

quency noise caused by variations in electrode contact and unintended movements of the fingers

carrying the sensors; the BVP is passed through 512 (in Data Set 1) and 4096 (in Data Set 2 and

Data Set 3) point zero-phase low-pass filter with 6 Hz cutoff frequency, following [40]. The SC

signal is first down sampled to 60Hz, and then passed through 120 point zero-phase low-pass filter

with 1 Hz cutoff frequency [26] for the three data sets. Further, the recorded data is split into 5

sub-data of 60 seconds, each corresponding to a segment of the game, Figure 4.1.

4.2.1 Feature Extraction from BVP Signal

In the low-pass filtered BVP data, we first identify the local maxima points using “find-

peaks” routine in MATLAB, see, e.g., [137, 7]. This helps to identify inter-beat intervals (IBI). In

order to reduce the error in the analysis, IBI time series are further pre-processed, via a standard

beat interval correction algorithm, as suggested in [111, 5].
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Figure 4.1: BVP and SC are divided into 5 segments.

Top and middle is the BVP signal, and bottom is the sample recorded SC signal. Prior to the

analysis, both BVP and SC are divided into 5 sub-data, each corresponding to one segment of the

game.

In this study, the following three features are then computed from the IBI data in time

domain (see the complete overview on BVP features in Section 2.3.3): mean HR, which is known

to increase with increasing task demand [90, 89]; RMSSD, which is inversely proportional to stress

[99]; and pNN50, which is significantly lower in a mental task than during rest [123].

4.2.2 Feature Extraction from SC Signal

In the low-pass filtered SC data, we first remove the first and last 10 seconds of the signal

data. The reason for this is justified as follows: the SC is expected to rapidly increase when a sudden

stimulus is introduced at the game transition. We remove the first 10 sec. of the SC to eliminate

this effect as it unfavorably supports our hypothesis. Moreover, SC measurements have certain
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latency [29], and by ignoring the first 10 sec. of each game, we also prevent the memory effects

and the influence of the previous game rolling into the current game. We also wish to eliminate

the steady state behavior in SC measurements. Although the subjects cannot learn the game due to

its randomized events, we remove the last 10 sec. of each game segment to prevent any effects of

relaxation of subjects.

One of the most common tonic feature of skin conductance measures, namely, the mean

SCL, which is also used in [31, 74, 118, 89, 90, 22, 107, 122, 44], is then computed corresponding

to each segment of the game (see the complete overview on SC features in Section 2.3.1). SCL was

reported to increase with increase in cognitive load and task demand [89, 90].

4.3 Analysis of Experimental Results and Comparisons

Total of 37 subjects (24 unique subjects) participated in this study. While the results

presented in the next section are encouraging, it is important to remark that this number can be

considered at the lower limit of running statistical analysis (total of 24 unique subjects vs. 32

recommended in general).

In terms of statistical analysis, among all participants, within-subjects statistical compar-

isons using a repeated measures general linear model (GLM) procedure are conducted on NASA-

TLX data obtained from the subjects in Data Set 1 and Data Set 3, on game-performance metric

(Data Sets 1-3), and on the metrics extracted from BVP and SC sensors in Data Sets 1–3. A value

of α = 0.05 is used to define statistical significance. Greenhouse-Geisser adjustments are examined

for the above metric distributions; the adjusted degrees of freedom are reported for those that violate

the assumption of sphericity, otherwise degrees of freedom are reported as whole values. Whenever

significant main effects appeared, post hoc comparisons of paired means were carried out using

a least significant difference test (LSD). In this study, statistical analysis is conducted using IBM

SPSS R© version 20, following the procedures reported in [89, 113].

4.3.1 Hypothesis and Results Summary

Since we have several metrics, comparisons, and data sets, we wish to simplify the pre-

sentation with a condensed summary section, leaving the details, interpretations, and discussions to

separate sections.
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Overall, for all the metrics, we hypothesize that significant differences exist among game

levels E1, D, and E2 (F test). Further, significant differences are hypothesized in pair-wise com-

parisons E1 vs. D, and D vs. E2; whereas, no significant difference is expected between the two

identical games, E1 and E2.

For all the metric analysis that shows consistency with the above hypothesis is marked

with 3else with 7. Moreover, green and red colors are used respectively to indicate that a met-

ric in the corresponding data set and game pair repeatedly shows, and does not show statistical

significance in pair-wise comparisons 1.

Overall, we find out that except a few cases, all the metrics in all data sets are supporting

our hypotheses. Those few cases can be found on Table 4.5 with a sign 7. Moreover, in almost

all the cases, statistical power of the analysis for each parameter was larger than 95%, with three

exceptions: RMSSD in Data Set 2 (∼88%) and Data Set 3 (∼77%), and pNN50 in Data Set 1

(∼93%).

We now present all the details of the statistical analysis.

4.3.2 Subjective Workload Evaluation

The NASA Task Load Index uses six dimensions to assess mental workload: mental de-

mand, physical demand, temporal demand, performance, effort, and frustration. Twenty step bipolar

scales are used to obtain ratings for these dimensions. A score from 0 to 100 (assigned to the near-

est point 5) is obtained on each scale. A weighting procedure is used to combine the six individual

scale ratings into a global score by paired comparison task prior to the workload assessments. Paired

comparisons require the subject to choose which dimension is more relevant to workload across all

pairs of the six dimensions. The number of times a dimension is chosen as more relevant is the

weighting of that dimension scale for a given task for that operator. A workload score from 0 to 100

is obtained for each rated task by multiplying the weight by the individual dimension scale score,

summing across scales, and dividing by 15 (the total number of paired comparisons) [49].

Mental workload scores based on each subject’s response to NASA-TLX questionnaire in

Data Set 1 and Data Set 3 are listed on Table 4.1, where the scores range from 0 to 100, with 100

being the highest subjective score for increased mental workload [49]. Part of this analysis for Data

Set 1 was summarized in [101].
1Only if the metric is found to be statistically significant among all the groups (F test).
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Data Set 1 Data Set 3

Subject E1 D E2 Subject D E1 E2

1 10 92.7 6 1 78 13.3 4.3

2 3 71.3 5 2 78.7 7 6.7

3 5 69.7 5 3 60.3 5 6.3

4 6 81.7 4 4 84.3 11.3 9

5 7 64.7 5 5 82.7 17.7 13

6 9 59.7 11.3 6 78 8.7 5

7 4 92.3 4 7 82 11.7 2.7

8 10.7 78.7 11.7 8 76.7 21.3 6.7

9 5 66.3 8 9 84 17 4.03

10 5 74.7 10 10 71.3 4.3 6.3

11 7.7 85.3 8 11 68.3 3.7 2.3

12 5 54.7 7.3 12 68.7 4.7 5

13 5 80.7 6.3 – – – –

Table 4.1: NASA-TLX workload scores were assessed for the 13 subjects in Data Set 1 and

another 12 subjects in Data Set 3.

The workload scores were calculated from 0 to 100 for each game (E1, D and E2), where 100 points

corresponds to the largest mental workload. Notice the order of the D and E1 is changed in Data

Set 3.

In both Data Set 1 and Data Set 3, significant difference is found between three groups

E1, D, and E2 (p < 0.05), see details on Tables 4.6–4.7. Following this, pair-wise comparison

reveals consistent results in both Data Set 1 and Data Set 3 where the average mental workload

score for the difficult level is significantly higher than the average mental workload scores for E1

and E2 (p < 0.05). Moreover, in Data Set 1, there are no statistically significant differences in

mental workload scores of E1 and E2 (p = 0.308). On the contrary, in Data Set 3, these scores in

E1 are significantly higher than those in E2.

It is important to note that the above analysis is based on six dimensions, namely, mental

demand, temporal demand, physical demand, performance, effort, and frustration level which are

converted to NASA-TLX scores following standard procedures [49, 20]. We find that, in both

Data Sets 1 and 3, mental demand was the dominant dimension followed by temporal demand and
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performance dimensions, as perceived by the subjects (plots are suppressed). In this sense, subjects’

perceptions on average also meet our game design rationale, discussed above.

4.3.3 Objective Workload Evaluation

In order to asses the objective measure of mental workload that the subjects experienced

while playing different levels of the game, we extract the following metrics: Task performance by

recording subjects’ trajectories and airplane assignments; mean HR, RMSSD, and pNN50 from

BVP sensor; and mean SCL from SC sensor. These are the same metrics calculated in [101], but

only for Data Set 1. Here, we mainly focus on comparing the results, which cover both the same

subjects (Data Set 2) and balanced experiments with different subjects (Data Set 3).

4.3.3.1 Task Performance Analysis with Comparison

Subjects play the game on a touch-screen monitor, and hence all their finger-strokes are

recorded. A subject’s performance in the AT game with the “goal” of assigning an airplane to an

airport can be measured by the number of successful “airplane assignments” to the airports.

It is very important to note the following observation first. In the easy game, an airplane

arrives into the screen every 3 sec. With the game length being 60 sec., a subject is therefore

presented a total of 20 airplanes. In the difficult game, airplane arrival rate and game duration are

the same as in the easy game, and as long as the subject makes correct assignments, color indicators

immediately switch without imposing any unwanted delay, giving the subject a chance to react on

his/her next assignment. Considering these settings, it is critical to note that a very good player in

both easy and difficult game will be presented 20 airplanes in 60 sec. In this sense, the difficult

game does not unfavorably reduce the number of assignments a subject can make. On the other

hand, due to added challenges in the difficult game, subject’s making mistakes eventually reduces

the number of successfully assigned airplanes.

In Figure 4.2, the “average” of subjects’ performance metric is presented, where we ob-

serve that this average is the lowest in the difficult game compared with other segments of the game.

We find out that among all the subjects in Data Sets 1–3, subjects’ performance is significantly

affected by game difficulty, see Tables 4.6–4.7.

Moreover, in Data Set 1, subjects’ performance for the difficult game is significantly lower

than the average of the same value for E1 and E2 (p < 0.05), Figure 4.2a. The tests also indicated

that subjects’ performance for the E1 level do not significantly differ from the values calculated for
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Figure 4.2: Overall performance metric, on average, for each segment of the game across all

subjects in Data Sets 1–3.

Performance Index is defined as the number of successful airplane assignments. The subjects’

performance decreases from E1 to difficult (D) game and further increases when the subjects played

E2 game. Subjects’ performance level for D, on average, is the lowest among three segments of the

game. The error-bar represents the standard error.

E2 level (p = 0.178). These results were qualitatively the same in Data Set 2 (Figure 4.2a) and Data

Set 3 (Figure 4.2b), see Tables 4.6–4.7.

4.3.3.2 BVP Feature Analysis with Comparisons

IIn light of the literature, we expect that mean HR increases; and RMSSD and pNN50

relatively decrease in the difficult game due to subjects’ increased mental workload. In Data Set 1,

this was consistent in mean HR, RMSSD, and pNN50 in 77%, 92% and 77% of the 13 subjects, see

Table 4.2. In Data Set 2, this ratio was respectively, 100%, 83% and 57% of the 12 subjects, and

100%, 67%, and 75% of the 12 subjects in Data Set 3 (see Table 4.2).

Statistical results are also consistent: in Data Sets 1–3 the mean HR, RMSSD, and pNN50

are significantly affected by the changes in game-difficulty (p < 0.05), see Tables 4.6–4.7. In

Data Sets 1–3, pair-wise comparisons reveal that the average of mean HR for the difficult game is

significantly higher than the average of the same metric for E1 and E2 (p < 0.05), Figure 4.3a–

4.3b. However, in Data Set 1, there was also statistically significant difference between averages of

normalized mean HR values for E1 and E2 (p < 0.05). In contrast, Data Sets 2–3 did not reveal any
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Data Set 1 Data Set 2 Data Set 3

Feature C IC CR* IC IC CR** C I CR**

mean HR 10 3 77% 12 0 100% 12 0 100%

RMSSD 12 1 92% 10 2 83% 8 4 67%

pNN50 10 3 77% 7 5 58% 9 3 75%

mean SCL 11 2 85% 11 1 92% 11 1 92%

Table 4.2: List of the consistency/supporting rate of the features extracted from the BVP and

SC signal across all the subjects in Data Sets 1–3.

The consistency (C) column shows the number of times feature values are consistent with the hy-

pothesis, considering that the values are the highest for the mean SCL and mean HR, and are the

lowest for RMSSD and pNN50 in the difficult game; otherwise presented in the inconsistency (IC)

column.

*Consistency Rate (CR) in Data Set 1 is [total number of subjects supporting consistency (C) / 13]

× 100.

**Consistency Rate (CR) in Data Sets 2–3 is [total number of subjects supporting consistency / 12]

× 100.

statistically significant difference for the same metric between E1 and E2, see Tables 4.6–4.7.

Moreover, pair-wise comparisons for RMSSD and pNN50 in Data Sets 1–3 also indicate

that these metrics for the difficult game are significantly lower than those in E1 and E2 (p < 0.05),

see Figures 4.4a–4.4d. The tests also indicated that pNN50 for the E1 game does not significantly

differ from those calculated for E2. Similar results are obtained for RMSSD but only in Data Sets

1–2, see Tables 4.6–4.7.

4.3.3.3 SC Feature Analysis with Comparisons

We expect that the mean SCL increases much more in the difficult game as the subjects

experience higher level of mental workload, partly induced by their inexperience. We observed that

the mean SCL is indeed larger in the difficult game, among 85% of the 13 subjects in Data Sets 1

[101], among 92% of the 12 subjects in Data Set 2, and among 92% of the 12 subjects in Data Set

3, see Table 4.2.

In all three data sets, mean SCL values are significantly affected when subjects experi-

enced different levels of difficulty while playing the game (p < 0.05), see Tables 4.6–4.7. In Data
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Figure 4.3: The average values of the mean HR extracted from BVP for each segment of the

game across all subjects in Data Sets 1–3.

In Data Sets 1 and 2 (left) the mean HR increases from R1 to D when the subjects play D game, and

further decreases from D to E2 in a linear fashion. Consistent behavior is again observed in Data

Set 3 (right) where mean HR increases from R1 to D, and further decreases from D to E2 linearly.

The error-bar represents the standard error.

Sets 1-3, pair-wise comparisons reveal that the average of mean SCL values in D are significantly

higher than E1 and E2 (p < 0.05, Figure 4.5). Moreover, in Data Sets 1–2, statistically significant

difference is found between the averages of mean SCL for E1 and E2 (p < 0.05), see Figure 4.5a,

and Tables 4.6–4.7. However in Data Set 3, we observe that mean SCL between E1 and E2 does not

render significant differences, see Figure 4.5b, and Tables 4.6–4.7.

4.3.4 Combined Metric Score (CMS)

4.3.4.1 Fusing Skin Conductance and BVP Metrics Using Data Set 1

With the advantage of recording SC and BVP synchronously, we now investigate their

combined effects. This is motivated by the fact that (a) a single physiological measurement may not

always provide sufficient information into subjects’ mental states [116, 89]. This is expected with

the presence of human subjects bringing variability (here consistency rates range from 60% to 100%

of subject populations). (b) Having a composite metric that fuses various metrics together could

better capture multiple dimensions of how subjects’ physiological measurements present themselves

against game difficulty and subjects’ inexperience with the game.
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Figure 4.4: The average values of the RMSSD and pNN50 extracted from BVP for each seg-

ment of the game across all subjects in Data Sets 1–3.

in Data Sets 1–2, RMSSD (top-left) and pNN50 (bottom-left) decrease from R1 to D when the sub-

jects play and further overshoot in R1 when subjects are at rest. Similarly, in Data Set 3, RMSSD

(top-right) and pNN50 (bottom-right) decrease from R1 to D, However overshoot in E1.

The way we fuse the sensory information together is simple yet practical, and does not

need any black box machine learning algorithms:

4.3.4.2 1 - Normalization

Since SC and BVP signals are highly dependent on each subject [107], normalization is

applied to remove this individual dependency, as is common practice in the literature [82, 29, 122].
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Figure 4.5: The average values of the mean SCL extracted from SC for each segment of the

game across all subjects in Data Sets 1–3.

In Data Sets 1–2 (left), the mean SCL increases in a linear fashion from R1 to D, and decreases

in E2. Similarly, in Data Set 3 (right), the mean SCL increases from R1 to D game and further

decreases when the subjects play E1 and E2. In all Data Sets, mean SCL in D is the highest, on

average, among all five segments of the game

This is performed following the standard formula,

Fnorm =
F −min(F )

max(F )−min(F )
(4.1)

where min(F ) and max(F ) are the minimum and maximum of a metric across all game segments,

and Fnorm is the normalized metric value where its minimum is 0, and maximum is 1.

4.3.4.3 Step 2 - Calibration with Data Set 1

We next use subjects’ consistency ratios 77%, 92%, 77%, and 85% of the metric values

(mean HR, RMSSD, pNN50, and mean SCL) only in Data Set 1, see Table 4.2. These are the ratios

describing the % of subjects where a particular metric presented consistency with our hypothesis.

This then yields a composite formula for the “Combined Metric Score (CMS)”

Combined Metric Scorei,j = 1/4
[
(1− normalized mean HRi,j)× 0.77 +

normalized RMSSDi,j × 0.92 + normalized pNN50i,j × 0.77 +

(1− normalized mean SCLi,j)× 0.85
]

(4.2)
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where consistency ratios multiply associated metrics as weighting coefficients, j is the game seg-

ment of the experiment, j = 1, 2, . . . 5, including the rest periods, and i is the subject number,

i = 1, . . . 13. Since the total number of normalized features used is four, the scaling is by four in

(4.2). With this, the combined metric value in (4.2) is a value between 0 and 1. Moreover, since

the mean HR and mean SCL metric values are found to increase with game difficulty, these metrics

are subtracted from 1, to have all the features consistently represented. Consequently, in the way

we setup (4.2), the lowest value is for Difficult (ideally zero) and the highest value is for R1 or R2

segments (ideally 1).

Data Set 1 Data Set 2 Data Set 3

Subject # R1 E1 D R2 E2 R1 E1 D R2 E2 R1 D E1 R2 E2

1 0.83 0.17 0.00 0.46 0.35 0.73 0.62 0.00 0.55 0.23 0.46 0.10 0.52 0.28 0.17

2 0.83 0.38 0.05 0.53 0.15 0.78 0.51 0.00 0.48 0.31 0.37 0.37 0.65 0.26 0.33

3 0.54 0.61 0.00 0.63 0.38 0.36 0.52 0.20 0.63 0.53 0.49 0.00 0.61 0.68 0.54

4 0.58 0.36 0.00 0.65 0.31 0.51 0.48 0.00 0.54 0.23 0.47 0.06 0.72 0.41 0.39

5 0.79 0.32 0.00 0.65 0.37 0.62 0.37 0.00 0.65 0.30 0.57 0.00 0.63 0.72 0.45

6 0.83 0.27 0.00 0.48 0.34 0.57 0.22 0.05 0.66 0.34 0.44 0.03 0.35 0.61 0.31

7 0.82 0.22 0.03 0.61 0.37 0.71 0.35 0.08 0.57 0.48 0.53 0.00 0.41 0.79 0.34

8 0.45 0.10 0.08 0.68 0.22 0.83 0.48 0.04 0.35 0.33 0.59 0.00 0.62 0.40 0.58

9 0.69 0.72 0.00 0.23 0.51 0.80 0.37 0.00 0.55 0.34 0.49 0.00 0.75 0.59 0.40

10 0.69 0.50 0.00 0.42 0.60 0.63 0.57 0.05 0.50 0.64 0.55 0.00 0.62 0.80 0.73

11 0.72 0.10 0.00 0.45 0.63 0.62 0.70 0.00 0.68 0.25 0.30 0.05 0.73 0.59 0.31

12 0.60 0.42 0.02 0.36 0.46 0.46 0.73 0.00 0.53 0.62 0.62 0.02 0.17 0.56 0.78

13 0.83 0.50 0.00 0.37 0.39 – – – – – – – – – –

Table 4.3: List of Combined Metric Score (CMS) values calculated for each segment of the

game across all the subjects in Data Sets 1–3.

Data Set 1 is used for CMS model fitting (calibration), and it is then validated using Data Sets 2–3.

CMS lies between 0 and 1 as it is calculated from the normalized feature values extracted from BVP

and SC signal data using Eq. (4.2).

Using CMS formula on Data Set 1, we obtain the results on Table 4.3:Data Set 1, which

show statistically significant differences between CMS in the D versus E1 and E2 game levels

(p < 0.05), see also Tables 4.6–4.7. That is, CMS in D is significantly lower than that of CMS in

E1 and E2 (p < 0.05), see also Figure 4.4a. This may not be surprising since the Data Set 1 was

used to generate (4.2).
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4.3.4.4 Step 3 - Validation on Data Sets 2–3

We now investigate the validity of CMS. Without any additional calibration, we calculate

CMS using (4.2) but this time on Data Sets 2–3. Recall that these data sets encompass the subjects

that already participated in Data Set 1, and a set of completely new subjects.
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Figure 4.6: The average values of actual and normalized combined metric score (CMS) in Data

Sets 1–3.

In Data Sets 1–2 (left column), and Data Set 3 (right column), on average, CMS value is the lowest

for the difficult game. In Data Sets 1–2, the average of normalized CMS for the D game is 0.00 ±
0.00.

Across all the subjects in both data sets, consistent results are obtained where CMS is

indeed the lowest for the D game, see Table 4.3:Data Set 2–3. We observe statistically significant
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differences between CMS values in Data Sets 2–3 (p < 0.05), see also Tables 4.6–4.7:Data Set

2–3. Following this, pair-wise comparisons reveal that the average of CMS for the difficult game

is significantly lower than for both E1 and E2 (p < 0.05). Moreover, there are no statistically

significant differences between CMS values for the E1 and E2 games (see Tables 4.6–4.7) which

are again consistent with the statistical results obtained for CMS calibrated by only Data Set 1.

Data Set 1 Data Set 2 Data Set 3

normalized normalized normalized

segment CMS CMS segment CMS CMS segment CMS CMS

R1 0.71 ± 0.13 0.95 ± 0.11 R1 0.63 ± 0.14 0.89 ± 0.19 R1 0.49 ± 0.09 0.68 ± 0.19

E1 0.36 ± 0.19 0.49 ± 0.30 E1 0.49 ± 0.15 0.69 ± 0.24 D 0.05 ± 0.10 0.02 ± 0.08

D 0.05 ± 0.02 0.00 ± 0.00 D 0.03 ± 0.06 0.00 ± 0.00 E1 0.57 ± 0.17 0.82 ± 0.26

R2 0.50 ± 0.14 0.69 ± 0.21 R2 0.56 ± 0.09 0.81 ± 0.19 R2 0.56 ± 0.18 0.74 ± 0.31

E2 0.39 ± 0.13 0.53 ± 0.22 E2 0.38 ± 0.15 0.54 ± 0.22 E2 0.44 ± 0.18 0.58 ± 0.28

Table 4.4: The average values of actual and normalized combined Metric Score (CMS) across

all subjects in Data Sets 1–3.

The combined score values listed here are calculated using Eq. (4.2).

Metric
D and E1 D and E2 E1 and E2

Data Set 1 Data Set 2 Data Set 3 Data Set 1 Data Set 2 Data Set 3 Data Set 1 Data Set 2 Data Set 3

NASA-TLX 3 3 3 3 3 7

Performance 3 3 3 3 3 3 3 3 3

mean HR 3 3 3 3 3 3 7 3 3

RMSSD 3 3 3 3 3 7 3 3 7

pNN50 3 3 3 3 3 3 3 3 3

mean SCL 3 3 3 3 3 3 7 7 3

CMS 3 3 3 3 3 3 3 3 3

Table 4.5: Statistical Comparison.

The “Green background” color represents a statistically significant difference, otherwise it is repre-

sented by the “red background” color.

“3” symbol means that the statistical result is inline with our hypothesis, otherwise it is represented

by “7” symbol.

*: NASA-TLX is not conducted in the Data Set 2.
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4.4 Discussions

4.4.1 NASA-TLX Questionnaire

Statistically significant results on NASA-TLX mental workload scores suggest that the

difficult level of our AT game indeed required much more mental workload compared with the

easy levels of the game in all data sets. Moreover, analysis of the six individual dimensions of

NASA-TLX revealed that playing the difficult game has much higher mental demand as well as

performance and temporal demand dimensions on subjects, compared with the easy game. This is

supporting evidence of our desire to design a game that could create good balance between mental

workload, game speed, and performance. Furthermore, observing significant difference in NASA-

TLX mental workload scores between E1 and E2 in Data Set 3 can be an indication of residual

effects of playing E1 immediately after D level in Data Set 3. We will use this important information

in the following discussions.

4.4.2 Task Performance Metric

Consistent statistical results in Data Sets 1–3 on the performance metric indicate that the

subjects are challenged by the complexity of the difficult game, and subjects show consistent playing

in identical E1 and E2 games, regardless of the order of the game levels. As their performance in the

easy games follows similar patterns, subjects can be considered to be proficient with the easy game

level. Notice that among all the subjects in Data Sets 1–3, only one subject in Data Set 1 failed

to assign any of the airplanes in E2. While we think this could be related to a technical problem

in the data acquisition system, as we could not confirm the reasoning of such incident, Subject 1

data is still included in statistical analysis. Furthermore, we verified that all subjects could assign

successfully an airplane in the difficult game level, suggesting that pre-experimental briefing was

effective. Finally, we note that, the obtained results also have strong correlation with the NASA-

TLX questionnaire scores, which again demonstrates that subjects on average experience the highest

mental workload while playing the difficult game versus the two identical easy game levels.

4.4.3 BVP and SC Features

All BVP and SC metrics (mean HR, RMSSD, pNN50 and mean SCL) are significantly

affected by the cognitive workload changes in different levels of the game [101, 89, 53, 24], which

we mainly attribute to increases in subjects’ mental workload, induced by their lack of experience
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with the difficult game. This was clearly captured by mean HR (Figure 4.3) and mean SCL (Figure

4.5), across all subjects in Data Sets 1-3, being the “largest,” and RMSSD and pNN50 (Figure 4.4)

being the “lowest” in the difficult game than in the other game segments, indicating, on average, that

the subjects as a group reflect their arousal and mental workload increases through these metrics

[101, 89]. With support of NASA-TLX results and performance metric calculations, one could

therefore argue that the subjects as a group allocated higher level of mental effort on average when

they played the difficult game, which shows that the subjects as a group present some consistency

in their physiological responses, as predicted by these metrics.

However a few inconsistencies is observed when we compare mean HR and mean SCL

values in the two identical easy, E1 and E2 games: (a) in Data Set 1, mean HR for E1, on average is

significantly higher than E2 (Figure 4.3a). One possible explanation of this was that HR in E2 is still

influenced by the preceding difficult game even if there is a rest period, R2, making it statistically

different from E1 [101]. This is not the case in Data Sets 2–3 where the effect of cognitive workload

on mean HR in the two identical E1 and E2 is not significantly different (Figs. 4.3a–4.3b). In Data

Set 2, this could be partly attributed to the same subjects with prior experience in Data Set 1 being

less affected, and in Data Set 3, E1 and E2 are separated by a rest period instead of D in between

them in Data Set 1. An observation we extract from these discussions is that the rest period of 60

sec. may not be long enough for HR to regulate, and whenever a difficult game precedes the rest

period, the effect of the difficult game rolls over even after the rest period. (b) In Data Set 1, mean

SCL for E1, on average is significantly lower than E2 (Figure 4.5a). We believe that this is due to the

fact that the SCL measurements are in general affected by increased emotional arousal, specifically

in the difficult game, and remain in effect for a while even if the subject enters a rest phase. In other

words, SCL measurements have a type of “memory” effect. Similarly, we do not observe such cases

in Data Sets 2–3 possibly supported by similar reasoning we provided above regarding mean HR.

Statistical analysis on the above mentioned physiological metrics point out three key mes-

sages: (i) Since mean HR and mean SCL in D are larger, and RMSSD and pNN50 for D are smaller

than those for E1 and E2, this is consistent with the fact that subjects found the difficult game much

more difficult than the games E1 and E2, as assessed by NASA-TLX and performance metric. This

is also consistent with what is observed in our preliminary results [101]. If we consider only the

first two levels of the game, D and E1, we can conclude that subjects’ perception of game difficulty

as manifested by their inexperience is correlated with all the physiological metrics studied in this

work. Further, after the relaxed state R1, the HR and SCL metrics can successfully differentiate

the difficult game level D from the easy game level E1, regardless of the game order. (ii) When all
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levels of the game are considered, we reveal that the game order has a strong nonlinear effect on

RMSSD and pNN50 metrics. For example, the relaxation from D to R2 in Data Sets 1–2, or to E1

in Data Set 3 is very pronounced, indicating it is less critical what follows D. This relaxation seems

to also present a type of overshoot, as observed from D to E1 in Data Set 3, which then settles in R2

and E2 (Figs. 4.4). This overshoot is visible also in Data Sets 1–2 but may not be clearly noticeable

since this time game level D is followed first by R2. This is valuable insight into how RMSSD

and pNN50 interplay with game order, which, to the best of our knowledge, has not been studied

through subsequent game levels. Therefore, one can use RMSSD and pNN50 metrics to detect sub-

ject’ leaving the difficult game, regardless of what the subsequent game is, whether an easy game or

a rest period. (iii) Finally, if E1 and R2 periods were longer, we think that the physiological metrics

studied in Data Set 3 would have sufficient time to settle and ultimately be similar to those in Data

Set 1–2, but this needs to be confirmed in future experiments.

4.4.4 Combined Metric Score (CMS)

Figure 4.6 and Table 4.4 indicate that on average and across all the subjects in the three

Data Sets 1–3, CMS calculated using (4.2) for each segment of the game is the smallest for the

difficult game, appearing to be consistent with our expectations. In Data Sets 1–2, the values for

E1 and E2 lie between those of difficult and R1/R2; and moreover R1/R2 segments take the largest

value, showing consistency, Figure 4.6a. In Data Set 3 however, the strong impact of playing E1

immediately after playing the D game is observable, recalling a type of overshoot described above,

where the CMS for E1 is the highest, and further relaxes toward E2, Figure 4.6b.

The above results suggest that CMS proves to be a valid metric for the same subjects in

Data Set 2 (except one missing) and with a set of completely different 12 subjects (Data Set 3) where

it still reliably predicts mental workload increases as triggered mainly by subjects’ inexperience in

the difficult game. It also shows that on average, and in support of NASA-TLX results (Data Set 1,

Data Set 3) as well as performance metric calculations, subjects’ experience, regardless of the game

order, the highest level of mental workload when they play a challenging game with which they

have insufficient experience, supporting our hypothesis; and the lowest level of mental workload

when they did not play the game and remained at rest, as was expected and is consistent in all three

studies. Moreover, even if the subjects have no exposure to the difficult game level in Data Set 1,

and are experienced with both game difficulty levels in Data Set 2, we obtain similar and consistent

results, again owing to subjects’ lack of training and insufficient exposure to the difficult game.
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Feature
Easy 1 Difficult Easy 2

Mean SD SEM Mean SD SEM Mean SD SEM

D
at

a
Se

t1

NASA-TLX 6.34 2.37 0.66 74.81 11.83 3.28 7.05 2.63 0.73

Performance 18.69 0.48 0.13 6.85 3.85 1.07 16.54 5.32 1.48

mean HR 83.14 12.08 3.35 88.00 14.14 3.92 77.78 11.65 3.23

RMSSD 34.68 18.13 5.03 22.74 10.41 2.89 36.35 18.49 5.13

pNN50 13.73 10.90 3.02 5.65 9.04 2.51 19.76 14.57 4.04

mean SCL 9.14 2.86 0.79 11.89 3.36 0.93 11.17 3.05 0.85

Combined Score 0.36 0.19 0.05 0.05 0.02 0.05 0.39 0.14 0.04

D
at

a
Se

t2

Performance 18.50 0.90 0.26 8.08 3.03 0.87 18.42 0.51 0.15

mean HR 70.78 9.93 2.87 78.65 11.00 3.17 69.98 9.05 2.61

RMSSD 47.01 12.39 3.58 35.56 15.15 4.37 44.42 16.67 4.81

pNN50 22.05 10.75 3.10 15.56 15.14 4.37 33.28 19.45 5.62

mean SCL 4.50 1.96 0.56 6.70 2.75 0.79 5.73 2.76 0.80

Combined Score 0.49 0.15 0.04 0.03 0.06 0.02 0.38 0.15 0.04

D
at

a
Se

t3

NASA-TLX 10.48 5.91 1.71 76.08 7.45 2.15 5.94 2.90 0.84

Performance 18.83 0.39 0.11 7.00 2.89 0.83 18.75 0.45 0.13

mean HR 79.31 11.43 3.30 91.67 11.36 3.28 78.45 11.38 3.28

RMSSD 44.52 23.15 6.68 27.08 12.10 3.49 31.72 13.15 3.79

pNN50 21.06 15.96 4.61 6.44 6.21 1.79 14.30 13.49 3.89

mean SCL 8.85 4.19 1.21 10.16 5.46 1.58 8.65 4.53 1.31

Combined Score 0.57 0.17 0.05 0.05 0.10 0.03 0.44 0.18 0.05

Table 4.6: Mean, standard deviation (SD), and standard error of the mean (SEM) for feature

values in different games across all the subjects in Data Sets 1–3.

The descriptive statistics presented are from the calculated normalized values for mean HR, RMSSD

and pNN50 from BVP and mean SCL from SC signals in each game. The combined metric score is

calculated using (4.2).
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4.5 Summary

In this chapter, we study from an affective computing point of view, whether or not sub-

jects’ inexperience in an experimental task can manifest itself as obvious variations in physiological

measurements obtained from HR and SC sensors.

Although the number of subjects in this study is at the lower limit of running statistical

analysis which might add some uncertainty or variability in statistical analysis results, the power

of the study seems to be quite favorable, supporting the findings, and calling for future studies in

expanded populations. Specifically, we find out that the metrics derived from sensor measurements

present consistency, and hence, through affective computing, subjects’ inexperience in a challenging

task via the ensuing mental workload changes is detectable. The results also show strong correlation

with NASA-TLX questionnaire, and subjects’ overall performance index. Moreover, the findings

suggest that different levels of subjects’ overall performance are directly correlated with the physio-

logical data collected. In addition, we find out that lack of experience in the difficult game produced

remarkably different physiological responses in all data sets, which were also associated with per-

formance.

Having confirmed the validity of the metrics in all data sets at hand (Data Sets 1–3), Data

Set 1 was then used to calibrate the metrics under a combined metric score (CMS). By using the

data obtained in Data Sets 2–3, CMS is then put to test in order to study its validity. We find out

that CMS still yields consistent and reliable results with the new data sets. Hence, CMS offers the

potential to be used in future studies as a single scalar quantity that could be used to make predictions

on subjects’ inexperience and/or what difficulty levels the subjects are encountering while playing

various game levels. These reverse scientific questions, including how to infer inexperience through

measurements remain as open problems to be studied in the future, all of which have the potential

to pave the way toward adaptive real time assistance schemes in human-machine systems.
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Chapter 5

DEVELOPMENT OF A COMBINED

TIME-FREQUENCY TECHNIQUE

FOR ACCURATE EXTRACTION OF

PNN50 METRIC FROM NOISY

HEART RATE MEASUREMENT

5.1 Introduction

It is well known that environmental stressors might trigger a fight or flight response in

humans. Such a mechanism, originated in the brain, passes arousal/stress messages to the nervous

and endocrine system. Some of these messages activate the sympathetic branch of the autonomic

nervous system (ANS), resulting in, among others, the following physiological responses: pupils

dilation, salivation inhibition, bronchial relaxation, adrenaline secretion, gastrointestinal activity

reduction, and cardiac activity modulation. This chapter studies how the cardiac activity modulation

can be used as an indirect assessment of the ANS activity, which is intimately related to the arousal

and stress level of human subjects [19].

Cardiac activity modulation, governed by the systolic and diastolic cycles, can be mea-

sured by utilizing standard heart rate (HR) sensors, such as electrocardiogram (ECG), photoplethys-

mography (PPG) [3] or blood volume pulse (BVP); and it can be quantified through heart-rate
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variability (HRV) analysis through the study of how instantaneous HR period varies with respect to

time. HRV has been broadly utilized to assess the affective states of humans [104, 60, 61], including

changes in mental workload [57, 90, 89] and stress levels [122, 50, 99, 123].

Traditional approaches compute the HRV in either time domain or frequency domain.

Both approaches are built upon the inter-beat interval (IBI) time series (see Figure 2.3), which

is constructed from the measured HR data by (a) first detecting the systolic peaks, and (b) then

calculating the time differences between all consecutive peaks. In time domain, the IBI data is

used to extract various HRV metrics. One of them is the so-called pNN50, which is defined as the

probability that the time difference between consecutive IBI samples is greater than 50 ms. The

pNN50 has been used not only to analyze the condition of the cardiovascular system [78], but also

to assess stress level and mental workload changes in human subjects [123, 122]. In frequency

domain, the Fourier transform of the IBI data can also be used to extract various HRV metrics,

which have been used to assess human stress [122, 50] and mental workload [115, 126]. One of

these metrics is based on the ratio between the low frequency (LF) power (0.04Hz-0.15Hz) and high

frequency (HF) power (0.15Hz-0.4Hz). It has been reported that an increased LF/HF power ratio

indicates a dominance of the sympathetic branch of the ANS, while its reduction is associated with

a dominance of the parasympathetic branch of the ANS [19].

The efficacy of the aforementioned HRV techniques, both in time and frequency domain,

can be limited when used in a realistic clinical setting. For instance, data acquisition instabilities

and motion in HR sensors, like BVP, may degrade the signal to noise ratio in the measured data;

and this may ultimately result in miss-detection of the heart beat peaks, causing errors in the IBI

time series, and therefore inaccurate estimation of the HRV-based metrics [10, 112] in both time

and frequency domain. Several techniques have been developed for reliable extraction of the IBI,

which include the following: 1) restricting the human motion in a controlled laboratory setting; 2)

smoothing the data with a low-pass filter [81], 3) detecting heartbeat peaks and correcting outliers

in the time series via postprocessing [73, 77, 39, 9] and real-time [112] algorithms.

Nevertheless, it has been shown that analyzing signals embedded in noise can be more

reliably done using combined 2D time-frequency processing techniques than using 1D time or fre-

quency methods [23, 21]. The main reason behind this improvement is that the energy of the un-

desired random noise is typically distributed over the whole time-frequency domain, whereas the

signal of interest will only concentrate its energy within limited time intervals and/or frequency

bands. Moreover, time-frequency techniques provide a suitable framework to analyze transient sig-

nals; and, therefore, they can be adapted for the study of inherently-transient HR data. While to the

58



www.manaraa.com

CHAPTER 5. COMBINED TIME-FREQUENCY TECHNIQUE TO COMPUTE PNN50

best of our knowledge such an approach on the HR data and pNN50 metric has not been presented

in the literature, a closely related work in this context can be found in [80][Chapter 4.4] where the

time varying instantaneous frequency is extracted using a time-frequency approach.

In this chapter, we present (a) a customized Short Time Fourier Transform (STFT) time-

frequency technique to analyze HR data highly corrupted by noise; and (b) a novel mathematical

formulation to extract the pNN50 metric from noisy HR data in the combined time-frequency do-

main. By leveraging on the aforementioned advantages of the time-frequency analysis, the proposed

method is capable of enhancing the accuracy and robustness of the pNN50 metric extracted from

the noise-corrupted HR data. One of the main reasons why this successful outcome is achieved is

because the proposed method does not rely on the calculation of the IBI data, which often presents

errors when computed with an automatic peak detection algorithm from noisy HR data. Moreover,

the proposed approach does not require the use of any filtering, visual evaluation of IBI data and

correction of its outliers or any prior knowledge about the noise distribution.

The chapter is organized as follows: in Section 5.2.1, we review the conventional time

domain formulation to compute the pNN50 metric, and we describe the proposed mathematical

framework needed to extract the pNN50 from the HR data in the combined time-frequency do-

main, Section 5.2.2; in Section 5.4, we evaluate the performance of the proposed method on a noisy

synthetic analytic signal, Section 5.4.2 and on a realistic BVP signal, Section 5.3.3. Results demon-

strate that the proposed time-frequency domain approach outperforms conventional time domain

methodology in the accuracy of the extracted pNN50 metric, thus providing a better assessment

tool to characterize stress levels and mental workload changes in human subjects [123, 122].

5.2 Methods

5.2.1 pNN50 calculation in time domain

The pNN50 is computed by observing temporal changes in the normal-to-normal (NN )

intervals, see Figure 2.3. In this figure, a generic PPG signal is depicted with several pressure

peaks generated during the systolic and diastolic phases of the cardiac cycle [45]. Let us denote tk,

k = 1, 2...nt, the time instant at which the systolic peak is measured. Then, the NNk interval at

t = tk, k = 1, 2, . . . , nt − 1 with nt being the number of systolic peaks, is given by the following

equation:

NNk = tk+1 − tk. (5.1)
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Since the value NNk captures the time difference between two consecutive peaks in a

quasi-periodic signal, it can be considered to be an approximation of the instantaneous period of the

signal, T ik, at every instant of time tk. This value can be written as follows:

NNk ≈ T ik. (5.2)

The amount of HRV can be quantified by measuring the variation of the instantaneous period of the

PPG signal at every time tk. This variation, ∆T ik, can be approximated as the difference between

two consecutive intervals, ∆NNk, when equation (5.2) is used. That is,

∆T ik ≈ ∆NNk = NNk+1 −NNk. (5.3)

The pNN50 is defined as the probability that ∆NNk, for k = 1, 2 . . . nt − 2, is greater than 50 ms,

where nt−2 is the total number of intervals differences. This probability can be extracted using the

following estimator [78]:

pNN50 ≈ #NN50

#NN
, (5.4)

where #NN50 is the number of interval differences ∆NNk, k = 1, 2...nt− 2, greater than 50 ms;

and #NN = nt − 2.

5.2.2 Proposed pNN50 formulation in time-frequency domain

The time domain method described above may incorrectly estimate the instantaneous pe-

riod and the pNN50 statistic when the PPG data is corrupted by certain amount of noise. This

problem mainly occurs because the detection of the systolic peaks cannot be reliably done in the

presence of noise. As discussed in the Introduction, the Short-Time Fourier Transform (STFT),

which is a combined time-frequency domain method, can reduce the impact of noise in the signal

of interest. Hence, it is a suitable tool to reliably calculate the pNN50 metric from noisy PPG data.

The proposed method to compute the pNN50 using the STFT is divided into six steps:

1) Extracting the average IBI of the PPG signal; 2) Computing the STFT of the PPG signal using

a sliding window that is customized by the averaged IBI; 3) Calculating the power spectrogram

from the STFT; 4) Extracting the instantaneous frequency from the spectrogram; 5) Computing the

variation in the NN intervals from the instantaneous frequency; 6) Calculating the pNN50 from the

variations in the NN intervals. The implementation of the algorithm is carefully described in the

following subsections.
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5.2.2.1 Step 1 - Extracting the average IBI

The first step in the proposed algorithm is to estimate the average IBI, denoted by ÎBI ,

of the PPG signal. The value of the estimated IBI is equivalent to the reciprocal of Heart Rate (HR)

estimate, ĤR, and hence it can be expressed as the averaged frequency of the heart rate, f̂HR, as

ÎBI =
1

ĤR
=

1

f̂HR
. (5.5)

The value of f̂HR is obtained as a weighted average of the dominant components of the

PPG signal. For this, a value is defined, 0.8, as the threshold above which the components in

the normalized Fourier transform are selected [100]. These components are located around the

fundamental frequency, fmax, which is associated with HR (Figure 5.1). That is,

f̂HR = β1

∫ fu

fl

f |X (f)| df, (5.6)

where fl and fu are the lower and upper bounds for the integration variable f ; |X (f)| is the magni-

tude of the Fourier Transform of x(t), acting as weighted function; and β1 is a normalizing constant

given by β1 = 1/
∫ fu
fl
|X (f)| df .

5.2.2.2 Step 2 - Computing the STFT of the PPG signal

The second step in the algorithm is to compute the STFT of the PPG signal. The STFT

X (t, f) of the signal of interest x(t) is given by

X (t, f) =

∫ ∞
−∞

x(τ)w(τ − t; a)e−j2πfτdτ, (5.7)

where w(t; a) is a sliding window, of fixed size a seconds, used to extract the spectral components

x(t) in different instants of time.

There are three time-domain input parameters to the STFT algorithm: 1) the window size

a; 2) the sampling rate of X (t, f), which is defined by the window overlap region for two adjacent

samples; and 3) the shape of the STFT window w(t; a). These three parameters must be carefully

chosen to accurately obtain the pNN50 in the time-frequency domain.

The choice of the window size a is a trade-off between time and frequency resolution. A

short window can efficiently suppress the signal outside the window and give a localized measure

of the spectral density, but the frequency resolution may not be sufficient. A long window can

produce a rich spectral transformation, but the time resolution may be poor due to the large number
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Figure 5.1: FFT of the BVP measurements.

The dominant components around fmax = 1.53 Hz, (i.e. corresponding to the red dots) are used to

obtain HR for the specific signal data. With threshold = 0.8 (dotted line), the frequency 1.58 Hz is

located around fmax.

of averaged samples. In this study, the window size has been selected to be fixed at a = 2 × ÎBI .

This is the minimum size of the window in the time domain that is required to accurately compute

the pNN50, since at least three peaks of the PPG signal are required for this purpose. The window

w(t; a) slides along the time axis to calculate the spectral components at different time instants.

Consecutive windows are overlapped to ensure the continuity of the resultant signal.

The sampling rate of the STFT in time domain, Rt, depends on the size of the window, a,

and the overlap between consecutive windows, ov; and it is given byRt = 1/(a−ov). The selected

sampling rate is given by the inverse of the inter-beat interval: Rt = 1/ÎBI , therefore the overlap

is equal to the averaged IBI: ov = ÎBI seconds. In this way, the value of the sampling rate for

the time-frequency domain method is the same as the resolution of the time domain method. The

chosen sampling rate generates the sampled signal X (tk, fj), for k = 1, 2...nt and j = 1, 2...nf .

One additional advantage of computing the pNN50 from the time-frequency method is

that it uses all temporal samples in the interval a = 2× ÎBI, while the time domain method only uses
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three discrete data points corresponding to the three local maxima in the same interval. Increasing

the sampling rate is possible by increasing the overlap; however, this resolution enhancement in the

spectrogram requires additional computational time.

5.2.2.3 Step 3 - Calculating the power spectrogram from the STFT

The spectrogram P{·} of the sampled signal X (tk, fj) is calculated by

P{X (tk, fj)} = |X (tk, fj)|2 , (5.8)

which will be used in the next step to extract the instantaneous frequency of the PPG signal.

5.2.2.4 Step 4 - Extracting the instantaneous frequency from the spectrogram

The instantaneous frequency f ik of the PPG signal, which is defined as the reciprocal of

the instantaneous period T ik, is calculated from the spectrogram at every instant of time tk as a

weighted average of all the values of the spectrogram greater than a given threshold, K:

f ik = β2
∑

j|P{X(tk,fj)}>K

fjP{X (tk, fj)}, (5.9)

where β2 is also a normalizing constant given by β2 = 1/
(∑

j|P{X(tk,fj)}>K P {X (tk, fj)}
)

.

5.2.2.5 Step 5 - Computing the variation in the NN intervals from the instantaneous fre-

quency

The variation in the NN intervals, ∆NNk, in the time-frequency domain is computed as

follows:

∆NNk ≈ ∆T ik =
dT i(t)

dt

∣∣∣∣
t=tk

∆tk, (5.10)

where ∆tk is the time separation between peaks, given by ∆tk = tk+1− tk = NNk ≈ T ik; T i(t) is

the instantaneous period at time t, which is the reciprocal of the instantaneous frequency f i(t); and

the derivative of the instantaneous period at time t = tk is calculated by using the chain rule as:

dT i(t)

dt

∣∣∣∣
t=tk

=
−1

(f i(t))2
df i(t)

dt

∣∣∣∣
t=tk

. (5.11)

Finally, taking into consideration that T ik = 1/f ik, the variation in the NN intervals,

∆NNk, at time t = tk is given by:

∆NNk =
−1

(f i(t))2
df i(t)

dt

∣∣∣∣
t=tk

1

f ik
. (5.12)
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5.2.2.6 Step 6 - Calculating the pNN50 from the variations in the NN intervals

Using (5.12) it is possible to calculate theNNk interval differences, and consequently the

pNN50 given by (5.4), using the instantaneous frequency calculated in the time-frequency domain

method.

5.3 Data Analysis

The proposed method has been applied to synthetic and experimental data. In order to

verify the validity of this new approach, it was tested using signals with known instantaneous fre-

quency. For these cases, and to quantify the error of the estimation given by the different methods,

Root Mean Square (RMS) was used as figure of merit [68].

5.3.1 Test signals with no noise

5.3.1.1 Synthetic sinusoidal signal

The first test signal is a sinusoidal function cos (φ(t)). The relation between the argument,

φ(t), of a sinusoidal signal and its instantaneous frequency is given by:

f i(t) =
1

2π

dφ (t)

dt
⇔ φ(t) = 2π

∫ t

0
f i(τ)dτ. (5.13)

The instantaneous frequency selected for the signal under test follows a sinusoidal varia-

tion, given by:

f i(t) = f0 (1 +A1 cos (2πf1t) +A2 cos (2πf2t)) ; (5.14)

and using (5.13), the argument of the signal under test is calculated as:

φ(t) = 2πf0t+
A1f0 sin(2πf1t)

f1
+
A2f0 sin(2πf2t)

f2
, (5.15)

where f0 = 1 Hz is the main frequency of the cosine, f1 = 0.2 Hz and f2 = 0.3 Hz are the

frequencies of the modulated signals, and A1 = A2 = 0.05 are their amplitudes. The resultant

signal is similar to a pure cosine, as shown in Figure 5.2(a), but it has several spectral components

due to its variable instantaneous frequency, as depicted in Figure 5.2(b).

Following the steps described in Section 5.2.2, ÎBI is estimated following (5.5)-(5.6).

Using ÎBI , the size of the window, a, and the overlap, ov, that defines the sample rate, Rt, of the

STFT signal are defined. The value of each parameter is shown on Table 5.1 as Case 1.

64



www.manaraa.com

CHAPTER 5. COMBINED TIME-FREQUENCY TECHNIQUE TO COMPUTE PNN50

(a) (b)

Figure 5.2: Sinusoidal test signal.

(a) time domain, and (b) frequency domain.

Window size Overlap between windows Rate of the STFT

a [s] ov [s] Rt [Hz]

Case 1 (Section 5.3.1.1) 2.0000 1.0000 1.0000

Case 2 (Section 5.3.1.2) 1.4688 0.7344 1.3617

Game Segment R1 1.9346 0.9673 1.0338

Game Segment E1 1.7266 0.8633 1.1584

Game Segment D 1.5791 0.7896 1.2665

Game Segment R2 2.0508 1.0254 0.9752

Game Segment E2 1.8174 0.9087 1.1005

Table 5.1: Value of the parameters of the STFT for the different synthetic cases.

In this work, three different types of windows are studied: rectangular, Hamming and

Chebyshev. Figure 5.3(a-c) shows the spectrogram of the test signal for the different windowing

cases. The rectangular window has a narrower main lobe, but the level of the secondary lobes is

higher, as can be observed in Figure 5.3(a). Secondary lobes are much less pronounced in the case

of Hamming and Chebyshev windows.
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Figure 5.3: Spectrogram of a cosine with variable instantaneous frequency.

It is using window of size a = 2 s, overlap between windows ov = 1 s and type of window (a)

rectangular, (b) Hamming, and (c) Chebyshev.

5.3.1.2 Synthetic signal with several spectral components

The second test signal used was created as a linear combination of different spectral com-

ponents with different amplitudes. Figure 5.4 shows the resulting signal in time domain and fre-

quency domain.

(a) (b)

Figure 5.4: Signal under test (a) time domain, and (b) frequency domain.

In this case it is not possible to estimate the instantaneous frequency as in (5.13). Instead,

the Hilbert transform was used to derive the analytic function of the signal, resulting in the ability

to define the instantaneous frequency for every point on the function [59]. This was possible since
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the signal at hand is a narrowband signal1. The instantaneous frequency calculated using the Hilbert

transform is used as ground truth in this section.

As described in the previous section, the ÎBI of the signal is estimated and the size of the

window and the rate of the STFT are defined next. STFT is performed using the three considered

windows. Table 5.1 and Figure 5.5 respectively show the value of the parameters calculated for this

signal denoted as Case 2 and the spectrogram for the three cases.

Figure 5.5: Spectrogram of a signal under test.

Using window of size a = 2 s, overlap between windows ov = 1 s and type of window (a) rectan-

gular, (b) Hamming, and (c) Chebyshev.

5.3.2 Test signal with noise

It is well known that various noise levels are always present in real systems. In implement-

ing the above presented methods, different values of Signal to Noise Ratio (SNR) were considered,

using the test signal presented in Section 5.3.1.2. The noise is characterized by a Gaussian distribu-

tion of zero mean and standard deviation given by the SNR.

The actual value of the instantaneous frequency, calculated through the Hilbert transform

for a noiseless case from the previous section, was compared with the results obtained when a noisy

signal is analyzed with the time domain and time-frequency domain methods. For the latter, only

Chebyshev window was considered.
1One precaution here is that Hilbert transform cannot be applied to broadband signals, such as real data [59]. See

further remarks in Section 5.3.2.
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5.3.3 Case Study: Experimental Data

The proposed time-frequency analysis technique is now applied to the raw data obtained

the recorded BVP sensor measurements from the 12 subjects participated in the mental-workload

experiment [101, 100], Data Set 2; see Chapter 3.1 for more details on the experimental setup and

procedure.

In the experiment, 12 subjects played the following games in this particular order: Rest 1

(R1), Easy 1 (E1), Difficult (D), Rest 2 (R2), and Easy 2 (E2), each lasting one minute, where E1

and E2 are identical easy levels of the game, and R1 and R2 are rest periods when there is no game

displayed on the screen and subjects rest. One of the sensors utilized in the experiment is a blood

volume pulse (BVP) sensor recorded at 2048 Hz, from which heart rate (HR) and inter-beat interval

(IBI) can be calculated. The BVP data is recorded during the rest period where subjects were at

rest.

For each BVP signal data recorded corresponding to each segment of the game, pNN50

in time domain using (5.4)is first calculated as was done similarly in [101], and also by applying the

proposed time-frequency analysis technique. Here, the pNN50 metric is calculated when a person

is at rest or playing a game with different levels of difficulty. Specifically, the pNN50 is computed

on five different temporal segments for a given player: two identical easy-level game segments (E1

and E2), one difficult-level game segment, and two identical no-game rest segments (R1 and R2).

In this analysis, no low-pass-filter pre-processing is applied to the data although this is a common

practice [50, 40, 3]. In this way, one can gain better insight regarding the consistency of the pNN50

calculated in time and time-frequency domain for different SNR.

As various noise levels are always present in real systems, different values of Signal to

Noise Ratio (SNR), namely, 0dB, 5dB, 10dB, 15dB, 20dB, and 40dB, are considered in imple-

menting the above presented methods, STFT algorithm. The noise is characterized by a Gaussian

distribution of zero mean and standard deviation given by the SNR. Prior to the STFT analysis, a

noise level is artificially added to the experimental BVP data2.

Finally, for each simulated signal to noise ratio, SNR = 0dB, 5dB, 10dB, 15dB, 20dB, and

40dB, corresponding to a segment of the experiment, the pNN50 in time domain using (5.4) again3,

and by using proposed time-frequency analysis technique is calculated. For STFT, three different

window options are used, namely, Rectangular, Hamming, and Chebyshev with 50dB of attenuation.
2Notice that the raw BVP data is considered as the baseline signal here, although it may be inherently noisy. Noisy

BVP data however refers to the raw BVP data with artificially added noise.
3This time on the noisy BVP data.
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In this way, one can gain better insight regarding the consistency of the pNN50 calculated in time

and time-frequency domain for different SNR.

Notice, the ground truth IBI and pNN50 data are not available in this experimental ex-

ample; and, for this reason, a human operator extracts the IBI data manually via detecting the time

occurrences of maxima points in the HR data, in order to compute the ground truth pNN50. To gain

additional confidence about this decision, the pNN50 values calculated for the all 12 BVP data, used

in our previous work [101] (under low pass filtering), are compared with the ones that are calculated

here on the raw signal. The absolute difference between these two sets of PNN50% values has a

mean of 5.20% and a standard deviation of 3.50%, across the five segments of the game and for

all 12 subjects. Since the average difference within each segment is sufficiently small, the pNN50

values calculated in time-domain based on the raw signal could be used as a ground truth in this

case study.

The next step is to investigate how well the time-frequency domain method computes the

pNN50 values, compared with those that are computed using the conventional method, see Section

5.2.1. Specifically, the following questions are of interest: (a) how consistent is the proposed method

in calculating pNN50 across various noise levels added to the raw signal? and (b) which windowing

technique is more consistent across those noise levels?

5.4 Results and Discussion

5.4.1 Test signals with no noise

5.4.1.1 Synthetic sinusoidal signal

Figure 5.6 depicts the comparison among the actual value of the instantaneous frequency

given by (5.14), the estimation extracted from the spectrograms, and the value calculated in time

domain as inverse of the NN intervals.

Using the result in (5.12), the NN interval differences are calculated directly from the

estimation of the instantaneous frequency in the time-frequency domain. This result is used to

compute the pNN50 as described in (5.4). Table 5.2 summarizes the value of the RMS of the

differences between the actual value and the different estimations of the instantaneous frequencies,

and the pNN50 calculated with each method.

The pNN50 values calculated using the time-frequency domain method are closer to the

ground truth, given by equation 5.14, than those given by time domain method. Nonetheless, since
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Figure 5.6: Instantaneous frequency of the signal.

RMS pNN50

Ground truth 0 0.5415

STFT (rectangular window) 0.0344 0.5000

STFT (Hamming window) 0.0089 0.5862

STFT (Chebyshev window) 0.0073 0.5862

Time domain 0.0053 0.3860

Table 5.2: RMS of the estimation of the instantaneous frequency and pNN50 for a sinusoidal

signal.
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there is no noise corrupting the signal, both time domain and time-frequency domain techniques,

using a judiciously selected Chebyshev or Hamming window, are suitable to detect the instantaneous

frequency. The uniform rectangular window is, however, not suitable in this particular case due to

its inherently high side lobe levels.

5.4.1.2 Synthetic signal with several spectral components

Figure 5.7 shows the instantaneous frequency calculated with the Hilbert transform (ground

truth), and the estimations obtained using the time-frequency domain method and the time-domain

method. Table 5.3 summarizes the RMS of the differences between the ground truth and the esti-

mations, and shows the values of pNN50 values calculated using each method.

Figure 5.7: Instantaneous frequency of the signal under test.

It is demonstrated that both the original time domain method and the proposed time-

frequency method, accurately estimate the instantaneous frequency and the pNN50 value for two

synthetic signals when no noise is present. Next section shows the results of both methods when the

data is corrupted by noise.
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RMS pNN50

Ground truth 0 0.3666

STFT (rectangular window) 0.0425 0.3418

STFT (Hamming window) 0.0270 0.3734

STFT (Chebyshev window) 0.0268 0.3734

Time domain 0.0357 0.3544

Table 5.3: RMS of the estimation of the instantaneous frequency for the test signal.

5.4.2 Test signal with noise

Figure 5.8(a-d) shows the actual and estimated values of instantaneous frequency for sev-

eral values of SNR. Time domain method performs worse as the noise level increases and masks the

correct positions of the maxima points in the HR data4. Nevertheless, the instantaneous frequency

calculated with the time-frequency domain method is similar to the noiseless case, even for values

of SNR as high as 0dB.

Figure 5.9(a) shows theRMS of the error between the estimation of each method and the

ground truth value, and Figure 5.9(b) compares the estimations of the pNN50 statistics calculated

with both methods. For each value of SNR, 100 simulations with random noise have been per-

formed. The value for RMS and pNN50 were calculated as the mean value of all the simulations

for each level of noise, and the uncertainty interval is given by the standard deviation obtained. We

clearly observe that for SNR levels lower than 40dB, the pNN50 values calculated in time domain

are unreliable, whereas the estimations made by the time-frequency domain method are consistent

and accurate.

5.4.3 Case Study: Experimental Data

For all the 12 subjects, the pNN50 values corresponding to each segment of the game

are calculated in time-frequency domain implementing the proposed STFT method and using three

windowing techniques across various noise levels added to the raw signal. The results are also
4Notice that with added noise, the arising signal is no longer narrow band hence Hilbert transform can no longer be

utilized. Indeed, with this transform the prediction of instantaneous frequency is erroneous and hence suppressed from

the figures.
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(a) (b)

(c) (d)

Figure 5.8: Instantaneous frequency for different values for SNR.

SNR = 30dB, 10dB, 5dB, and 0dB. Computations with Hilbert transform are suppressed as they

lead to erroneous results.

compared with the corresponding ones in time domain that are defined as the ground truth values

for each subject and in each segment of the game. Here, two sample results of two random subjects

are presented in Figs. 5.10 and 5.21.

As depicted in Figs. 5.10–5.21a, the pNN50 values computed using the traditional time-

domain technique are degraded for low SNR values. However, the proposed time-frequency domain

technique accurately computes the pNN50 even for low SNR values for the corresponding segment

of the game (Figs. 5.10–5.21b, 5.10–5.21c, and 5.10–5.21d for Uniform, Hamming, and Chebychev,

respectively).
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(a) (b)

Figure 5.9: Results of the simulations with noisy signals

(a) SNR vs. RMS, and (b) SNR vs. pNN50.

To investigate how well the time-frequency domain method computes the pNN50 values,

the corresponding pNN50 values calculated in time domain, and also by using the proposed tech-

nique in time-frequency domain across various noise levels are compared with the defined ground

truth, and then the absolute difference is observed.

For each subject, the average of pairwise comparisons between the pNN50 values corre-

sponding to each segments of the game in time domain, and the ones that are calculated in time-

frequency domain, with the ground truth are presented on Table 5.4, as well as in Figure 5.22. For

each subjects, the average of absolute difference is calculated out of 30 data points (pNN50) in time

domain (6 noise levels × 5 segments of the game) and out of 35 data points (1 no noise + 6 noise

levels × 5 game segments) for each window in time-frequency domain corresponding to all game

segments.

Figure 5.23 represents the average of mean absolute difference presented in Table 5.4 for

time and time-frequency domain approach in calculating the pNN50 across all the subjects.

Clearly, the time domain approach in calculating the pNN50 values on the BVP signal

with noise carries the highest amount of difference on average, 17.30 ± 5.43, across all five game

segments. The results clearly show the impact of strong noise level within the signal, which stems

from corrupted IBI data. Results obtained based on STFT suggest that implementing Hamming

and Chebychev windows results in “less amount” of difference in pNN50 values, 5.38 ± 3.41 and

5.66 ± 3.53 on average respectively, when compared with the corresponding values calculated by
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Figure 5.10: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 1.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).

time-domain approach. This is consistent with what is obtained in [100] where the analytical signals

Hamming and Chebyshev windowing produced superior results, compared with the corresponding

values calculated by time domain approach.
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Figure 5.11: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 2.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).

5.5 Summary

Calculation of pNN50 in time-domain is traditionally based on the IBI data, which needs

to be constructed from detected maxima peaks in the BVP signal. Results suggest that in the case

when this signal is noisy, it is difficult to detect the peaks, which ultimately affects pNN50 calcu-

lations when performed in time domain (Figs. 5.14a and 5.19a). To accurately calculate pNN50,
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Figure 5.12: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 3.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).

especially from signals with noise, and whose IBI cannot be reliably computed, the proposed time-

frequency domain approach render more accurate results, as demonstrated. STFT approach also

avoids many time-domain based post processing efforts otherwise needed to reliably extract the

IBI, thereby allowing a more robust means of computing pNN50.

For comparison purposes, classical approach based on time domain analysis is also taken,

both on the raw BVP signal and this signal with various artificially added noises. In the case when
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Figure 5.13: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 4.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).

the signal is noisy, as expected it is challenging to detect the exact locations of the maxima points

of the signal in time-domain, making it difficult to accurately compute pNN50 values. With pNN50

computed using the raw signal serving as ground truth, the results of the two approaches (time and

time-frequency domain) in calculating pNN50 are compared.

(a) calculating the pNN50 values in time domain carries the “highest” amount of differ-

ence on average when compared with the pNN50 values calculated via the time-frequency domain
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Figure 5.14: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 5.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).

approach. (b) In time-frequency domain. Moreover, results obtained based on STFT suggest that

implementing Hamming and Chebyshev windows on the experimental data results in “less” amount

of error in pNN50 values, on average, which is consistent with what is obtained in [100] where the

analytical signals Hamming and Chebyshev windowing produced superior results, compared with

the corresponding values calculated by time domain approach.

The calculated pNN50 using the combined time-frequency approach does not match the
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Figure 5.15: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 6.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).

ground truth for all the 12 subjects and game segments. For instance,

For instance, in Figures 5.12, 5.18, and 5.21 (11, 18, 21), we present cases scenario with

large amount of errors between the ground truth and the pNN50 values calculated using the proposed

approach, see Table 5.4, Figure 5.22. Although such results warrant further efforts on improving the

STFT algorithm, nevertheless, our proposed time-frequency calculation of the pNN50 outperforms

the classical time domain method for most of the subjects and game segments, thus making our
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Figure 5.16: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 7.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).

approach appealing for further investigation.

It should be noted that the lack of a ground truth in any experimental case study results

in our inability to determine which method captures the pNN50 more accurately, when compared

to an absolute truth. However, we clearly show that using the proposed time-frequency method for

computing the pNN50 is more reliable, in general, with noisy BVP signals.
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Figure 5.17: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 8.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).
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Figure 5.18: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 10.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).
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Figure 5.19: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 11.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).
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Figure 5.20: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 13.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).
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Figure 5.21: pNN50 corresponding to all segments of the game, across different noise levels

artificially added to the 2048 Hz signal for subject 14.

Time domain (top-left), Rectangular window (top-right), Hamming window (bottom-left), and

Chebychev window (bottom-right).
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subject time-domain
time-frequency domain

Rectangular Hamming Chebychev

1 14.52 ± 12.53 5.64 ± 3.21 3.75 ± 2.17 4.33 ± 2.63

2 23.75 ± 16.61 8.27 ± 5.76 13.54 ± 6.88 13.45 ± 6.65

3 23.49 ± 14.51 8.49 ± 6.51 4.42 ± 3.08 3.70 ± 2.84

4 25.44 ± 16.50 10.28 ± 5.44 6.43 ± 1.90 7.18 ± 2.35

5 11.54 ± 9.44 3.49 ± 2.60 2.91 ± 2.46 3.53 ± 2.65

6 9.71 ± 8.78 7.31 ± 4.45 1.98 ± 1.24 2.13 ± 1.85

7 14.05 ± 11.74 10.91 ± 7.98 2.99 ± 2.70 2.73 ± 2.29

8 23.32 ± 18.95 5.71 ± 2.05 4.74 ± 5.46 5.09 ± 5.70

9 13.77 ± 10.94 6.45 ± 2.48 7.81 ± 4.86 8.62 ± 5.48

10 13.25 ± 12.01 5.91 ± 2.59 1.36 ± 0.88 1.26 ± 0.96

11 18.72 ± 15.41 3.67 ± 2.64 6.10 ± 5.34 6.62 ± 6.02

12 15.99 ± 13.36 6.67 ± 3.17 8.56 ± 5.09 9.30 ± 5.77

17.30 ± 5.43 6.90 ± 2.30 5.38 ± 3.41 5.66 ± 3.53 average

Table 5.4: pnn50 comparisons: STFT and time domain.

The average of pairwise comparisons (absolute difference) between the pNN50 values correspond-

ing to each segments of the game in time domain, and the ones that are calculated in time-frequency

domain, with the ground truth
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Figure 5.22: The mean absolute difference error across all noise levels and game segments for

each subjects.
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Figure 5.23: Average of the mean absolute difference error across all subjects. The average is

calculate using the results presented in Table 5.4 across all 12 subjects participated in the study.
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Chapter 6

MENTAL WORKLOAD EVALUATION

VIA SUBJECTS’ BEHAVIORAL

METRICS

6.1 Introduction

Under surprise, panic, and mental overload, as well as due to lack of experience, humans

may temporarily lose their capacity to rapidly make correct decisions [89, 28]. This may cause

catastrophes and casualties in many scenarios [70], such as when a human is engaged with a task

s/he is not familiar with, lacks proper and up-to-date training in a task encountered, and is required

to quickly evaluate multiple and possibly competing parameters in a task.

In human-machine systems, negative effects of lack of training can be mitigated if the

machine that the subject is interacting with could intelligently sense subjects’ inexperience and

provide assistance [134, 107, 47]. Such assistance would be extremely valuable in car driving,

operating an aircraft and/or heavy machinery, and making critical decisions to carefully schedule

landing/take-off of aircrafts at airport control towers. For this to be successfully implemented, one

needs to address how the machine could know when the subject is indeed mentally overloaded.

Affective computing can provide opportunities in this direction [104] through the study of human

physiological responses, such as skin conductance [29], heart rate [89], EEG [134], EMG [81], and

EOG [132].

Application of affective computing tools is ubiquitous, encompassing psychophysiology
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research [97], gaming [32], car driving [89], operating an aircraft simulator [116], and perform-

ing multi-tasks involving memory games and arithmetic operations [116]. Other studies include

studying heart rate in real traffic pattern flights [135], associating heart rate irregularities to certain

diseases [88, 4], utilizing EEG signals to infer intention to command robots with mind, and keeping

track of eye blinks as an indicator of stress [116].

It was also argued in the literature that some technical issues may arise when using phys-

iological sensors [12, 100, 123, 110, 41]. Moreover, latency in sensing could limit bandwidth. For

example, in skin conductance sensors [29], the time difference between the onset of stimulus and

sensory changes can be around 2–3 seconds, and analysis of HR in real time would require recording

of multiple cycles before an inference can be made. Further, it is also necessary to make inferences

more reliably for inexperienced subjects, whose physiological measurements may not well corre-

late with training algorithms and real-time detection schemes, see, e.g., [134]. One justification of

this is because behavioral patterns of inexperienced subjects during task execution are much more

unpredictable and variable, while those of experts are more strategic and systematic, matching well

with computational or mathematical models.

Accordingly, we believe that one can infer mental workload changes thereby subjects’

inexperience much faster by studying subjects’ behavioral patterns. We hypothesize that such pat-

terns must be affected when subjects are engaged with tasks that demand different levels of mental

effort. These patterns, we believe, are correlated with the strategies subjects develop (or are unable

to develop) while trying to cope with task difficulty, and they can be as simple as swiping the finger

with different acceleration levels on a touchscreen display and performing different hand gestures

as well as arm movements. From this viewpoint, it is critical to emphasize that these behavioral

patterns are different from conventional performance metrics. The reason for this is that these pat-

terns are end results of mental workload changes as dictated by subjects’ inexperience and/or task

difficulty, and are hence only loosely coupled with the specifics of a task being performed. On the

other hand, performance metrics are directly and tightly associated with specific task outcomes as

the very nature of performance definition. Undoubtedly, behavioral patterns and performance met-

rics are related, yet these patterns provide higher-level information more directly related to mental

workload and strategy development, and less dependent on the specifics of a task. This makes the

analysis of such patterns attractive, as features of these patterns can be used directly to study and

compare subjects even across different tasks.

We argue that, if we could relate subjects’ behavioral patterns to subjects’ level of coping

with a task, and there is some evidence supporting this in different contexts [41, 33], this would
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be a valuable “sensor” as such detections can be made much faster with higher bandwidth and in

real time, through high-rate measurements such as via touchscreen mouse clicks and light-weight

accelerometers attached to human body. Some studies already investigated behavioral patterns,

especially hand gestures in touch-screen applications with iPads using subjects’ decision making

times [41] and keystroke dynamics [33] as metrics with device usability as the research focus; others

assessed decision making times with respect to number of choices needed to be evaluated by the

subjects, see the well-known Hick-Hyman Law [55, 62] and Fitts Law [38]; and others implemented

experimental studies in which subjects are trained in the tasks to be performed [115, 134, 116].

To the best of our knowledge, the above described research problem from the view point

of making inferences to assess subjects’ inexperience, and using this inference toward an intelligent

machine assistance scheme has so far not been studied. We recently started studying this research

question from the perspective of how behavioral metrics relate to performance and heart-rate vari-

ability metrics [102]. In the cited study however balanced experiments and what the effects of game

order are on subjects were not reported. The main focus of this article is to report these results.

Specifically, here, we study and compare three classes of metrics obtained from balanced experi-

ments in which subjects’ lack of training is explicitly considered: (a) a physiological metric called

pNN50 associated with heart rate, which very well correlates with mental workload changes as we

confirmed [101, 100], (b) metrics directly related to subjects’ task performance, and (c) behavioral

metrics as described above. The main objective is to investigate whether or not behavioral metrics

could offer any insight into drawing inferences regarding subjects’ lack of training or inexperience,

and how in this regard they relate to the metrics in (a)–(b) in balanced experiments.

Here, twelve subjects play a touch-screen air traffic (AT) game, see Section 3.1 for de-

tails. In brief, this game, which also resembles a logistics/task-allocation game, has two difficulty

levels (easy and difficult). The subjects learned the rules of both game levels, and they have suf-

ficient training with the easy game, but not the difficult game level. While the subjects are taking

the experiments, a BVP sensor is used to measure subjects’ heart rate activities, and subjects’ fin-

ger kinematics as well as decision making times are recorded through their interactions with the

touch-screen game. Following this, experiments are balanced specifically by changing the order

of the difficult game and easy game, and another group of twelve subjects take the same experi-

ments. Next, the metrics (a)-(c) described above are calculated based on collected data for both

experimental settings, to investigate the relationships amongst the metrics and with respect to game

difficulty.

The chapter is organized as follows. We first present our air traffic (AT) game in details
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and introduce the main tasks/goal in the game, followed by the experimental protocol, and definition

of metrics, including the formulation of behavioral metrics based on participants’ finger-stroke data

obtained from the touch-screen display. The results of the statistical analysis of these metrics with

discussions are provided next, and the article ends with conclusions and future research directions.

6.2 Data Collection

The data collection is detailed in Chapter 3.1 where is the experimental setup is demon-

strated for this study. In following we briefly introduce the experimental procedure.

6.2.1 Affective Computing using Blood Volume Pulse Sensor

The autonomic nervous system (ANS), which regulates many major physiological activ-

ities in human body, has two parts: the sympathetic nervous system, which modulates the body’s

resources for action under stressful conditions, and the parasympathetic nervous system, which re-

laxes and stabilizes the body into steady state [79]. Heart rate (HR) and heart rate variability (HRV)

are linked with the state of ANS, and can hence be used to study mental workload [53]. In general,

with higher levels of mental workload, it is expected that HR increases and HRV decreases [130].

A Blood Volume Pulse (BVP) [3] sensor can be used to measure HR activity and to calculate HRV

[83]. HRV is calculated here in time domain based on inter-beat interval (IBI) time series, a well

established technique [19, 2], using time-periods of consecutive peaks in HR data.

6.2.2 Experiment

The data analysis is conducted on the two data sets, namely Data Set 1 and Data Set 2,

that are recorded in two experiments. Twelve subjects participate in the first experiment (Data Set

2). Another twelve subjects participate in the second experiment (Data Set 3), see Section 3.3.

The experiments are performed using a Dell PC machine running a 32 bit Windows 7

operating system. A 21.5 DellTM ST2220T multi-touch monitor with 1920 × 1080 resolution, and

at 60 Hz frame-rate is used for displaying the game. The subjects sit comfortably in front of the

touch monitor, which is positioned vertically. Prior to the experiment, the subjects in Data Set 2 and

Data Set 3 play the easy level of the game for two minutes to familiarize themselves with the game

environment, interaction with the touch monitor, and performing the tasks in the game, i.e., drawing

trajectories. Moreover, all the subjects are also instructed and presented the rules and challenges
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of the difficult game, to familiarize them with this game level. Subjects however do not play the

difficult game.

We should note here that all the subjects in Data Set 2 have past experience playing both

game levels in a study with identical experimental protocol [101]. In that study, each subject had

played two sessions of the easy game and one session of the difficult game. Six weeks later, on

average, Data Set 2 was conducted, hence we assume that subjects in Data Set 2 have not retained

much of their experiences with the difficult game. All the subjects in Data Set 3 have had no prior

experience with any of the game levels.

In Data Set 2, subjects play the following games in this particular order: Rest 1 (R1), Easy

1 (E1), Difficult (D), Rest 2 (R2), and Easy 2 (E2), each lasting one minute, where E1 and E2 are

identical easy levels of the game, and R1 and R2 are rest periods when there is no game displayed

on the screen and subjects rest. In Data Set 3, we switch the order of the games D and E1. Subjects

play the following games in this particular order: Rest 1 (R1), Difficult (D), Easy 1 (E1), Rest 2

(R2), and Easy 2 (E2).

The reasoning behind the order of game segments is as follows: (i) All participants relaxed

during R1 to reset and stabilize their physiological states. (ii) In many real world scenarios, subjects

will be managing their tasks comfortably until a challenging scenario is encountered. It is therefore

of interest to understand the transition from an easy game to a difficult one, i.e., from E1 to D (Data

Set 2), and further the transition from a challenging scenario to a relaxing one, i.e., from D to E1

(Data Set 3). (iii) It is of strong interest to compare subjects’ behavioral patterns in both easy games,

and investigate whether or not the difficult game has any left over impact on subsequent games; and

lastly (iv) it is of interest to study whether or not specific behavioral patterns found in D game or in

the E1 game are dependent on the game order. Below, we will focus on items (ii)–(iv).

6.3 Metrics for Data Analysis

6.3.1 Physiological Metric pNN50

BVP sensory data is used here to calculate the well-known physiological heart rate metric

pNN50 [79] following standard data processing techniques. This metric is computed based on tem-

poral changes of the normal-to-normal (NN) heartbeat intervals also known as inter-beat-intervals

(IBI). It is defined as the probability that the variation between consecutive NN intervals is larger

than 50 ms, formulated as pNN50 = #NN50
#NN ,where #NN50 is the number of IBI differences greater
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than 50 ms, and #NN is the total number of all IBI differences. When subjects are engaged with

a task requiring increased mental workload, pNN50 is expected to decrease [24]. We already vali-

dated this correlation with statistical analysis using recorded heart rate data (from Data Set 1, which

is not reported here) as well as subjective NASA-TLX surveys [101].

Using the HR data collected in the experiments Data Set 2 (Data Set 2) and Data Set 3

(Data Set 3), pNN50 is calculated here in all game segments (including the two rest periods) for all

the subjects.

6.3.2 Performance Metric

Subject’s goal is to successfully play the game. For this, the subject (a) selects an airplane

by touching the touch screen display (i.e., by putting the tip of the finger in the vicinity of an

airplane), (b) draws a trajectory on the monitor, and (c) lifts the finger from the monitor. In light

of these, two performance metrics are proposed: the number of finger-strokes (# Strokes), and the

number of successful airplane assignments to the airports.

6.3.3 Behavioral Metrics

Utilizing information about how subjects play the game, we can describe metrics related

to their behavior in the game. For this, we study the following behavioral metrics: effort, response

time, and reaction time delays in drawing trajectories in the AT game1. Effort is defined as the

amount of energy per equivalent mass one expends in order to draw a trajectory. We define response

time as the finger-stroke duration time; and the time delay as the duration from the time when the

subject completes a stroke until the beginning of the subsequent finger-stroke. This time delay

arises mainly for decision-making purposes and when initiating physical movements of the arms,

consistent with Hick-Hyman Law [55, 62] and Fitt’s Law [38]. The metrics are formulated as

follows:

6.3.4 Effort Metric

The instantaneous finger speed vij is calculated in pixels/second for the distance between

the points j−1 and j in the ith finger-stroke within a time interval ∆tij . Inspired from kinetic energy

1These metrics were formulated and studied only on Data Set 2 data in [102]. Here we present them for completeness

and comparison with Data Set 3.
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formulation EKinetic = 1
2mv

2, we calculate the normalized total energy (TE) of finger-strokes as

follows:

TEg,i =

Ni−1∑
j=1

v2ij , (6.1)

where Ni is the number of points in trajectory i in a game-level g = E1, D, E2. Notice that since

the equivalent lumped mass m is different for each subject, and is unknown, we remove the term
1
2m from the energy calculations; in some way normalizing the energy expenditure with respect

to mass. This allows us to compare TE metric across different subjects with possibly different

actuation capacities commensurate with their physical capacities.

Using (6.1) next, the sum of the amount of normalized energy (SE) and mean of the nor-

malized energy (ME) within each game-level, g, can be calculated respectively with the following

formula:

SEg =

ng∑
i=1

TEg,i, and MEg =
SEg
ng

, (6.2)

where ng is the total number of strokes produced by the subject in a game-level g.

6.3.5 Finger-stroke Duration and Time Delay

Stroke Duration of the ith stroke is computed as the time difference between the moment

a trajectory is started when the finger touches the screen and the moment the trajectory is completed.

Stroke Delay Time is calculated as the duration when a subject’s finger is not in touch with the screen

between consecutive strokes. The mean of stroke durations (MSDur) and mean of stroke delay times

(MSD) within a game-level for each subject are computed respectively with the following formula:

MSDurg =

ng∑
i=1

Stroke Durationg,i

ng
, (6.3)

and

MSDg =

ng−1∑
i=1

Stroke Delay Timeg,i

ng − 1
. (6.4)

Notice, the formulation above consistent with Hick-Hyman Law [55, 62] and Fitt’s Law

[38] that we use in this section. In the next section, the above defined metrics will be calculated, and

their statistical significance will be evaluated in relation to game difficulty in balanced experiments.
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6.4 Results and Discussion

Among all participants in Data Set 2 and Data Set 3, within subjects statistical com-

parisons using a repeated measures general linear model (GLM) procedure are conducted on the

physiological metric: pNN50; performance metrics: number of strokes and number of successful

assignments; and behavioral metrics: effort, sum of normalized energy (SE), mean of normalized

energy (ME), mean stroke duration (MSDur), and mean stroke delay (MSD), across the three game-

difficulty groups (E1, D, and E2) with E1 and D game levels balanced. A value of α = 0.05 was

used to define statistical significance. Greenhouse-Geisser adjustments are examined for the above

metrics distributions; the adjusted degrees of freedom are reported for those that violate the assump-

tion of sphericity, otherwise degrees of freedom are reported as whole values. Whenever significant

main effects appeared, post hoc comparisons of paired means were carried out using a least sig-

nificant difference test (LSD). In this study, statistical analysis is conducted using IBM R© SPSS R©

version 20, following the procedures reported in [89, 113].

6.4.1 Physiological Metric: pNN50

In both Data Set 2 and Data Set 3, the values of pNN50 are significantly affected by the

changes in game difficulty, F (2, 10) = 10.667, p < 0.05 and F (2.886, 31.527) = 8.238, p < 0.05

respectively, with observed powers slightly larger than 0.98, see Tables 6.1–6.2. In both Data Set 2

and Data Set 3, pair-wise comparisons reveal that pNN50 in game D is significantly lower (Figure

6.1a-6.1b) than that of the same metric for E1 and E2 (p < 0.05). Moreover, the metric value in E1

does not significantly differ from the same metric values for E2 (p = 0.771), see Tables 6.1–6.2.

Statistical analysis point out three key messages:

(A) Since pNN50 for D is smaller than that for E1 and E2, this is consistent with the fact

that subjects found game D much more difficult than game E1 and E2, which is also consistent with

what was observed in [101]. If we consider only the first two levels of the game, D and E1, we can

conclude that subjects’ perception of game difficulty is captured by the pNN50 metric, where the

metric value is the lowest when subjects play the difficult level. Further, after the relaxed state R1,

the metric pNN50 can successfully differentiate the difficult game level D from the easy game level

E1, regardless of the game order.

(B) When all levels of the experiment are considered, we reveal that the game order has a

nonlinear effect on pNN50. For example, the relaxation from D to R2 in Data Set 2, or to E1 in Data

Set 3 is very pronounced, indicating it is less critical what follows D. This relaxation seems to also
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Figure 6.1: The average values of pNN50 for each game-level across all subjects who partici-

pated in Data Set 2 (left) and in Data Set 3 (right).

The error-bar represents the standard deviation.

present a type of overshoot, as observed from D to E1 in Data Set 3, which then settles in R2 and E2

(Figures 6.1b). This overshoot is visible in Data Set 2 as well but may not be clearly noticeable since

this time D is followed by R2 (Figure 6.1a). This is valuable insight into how pNN50 interplays with

game order, which, to the best of our knowledge, has not been studied in subsequent game levels. It

indicates that one can use pNN50 metric to detect subject’ leaving the difficult game, regardless of

what the following game level is, whether an easy game or a rest period.

(C) If E1 and R2 periods in Data Set 3 were longer, we think that pNN50 metric values

would be similar to those in Data Set 2, but this needs to be confirmed in future experiments.

In conclusion, as statistical analysis indicate, pNN50 shows some degree of dependency

on the game order, yet it could be adequately used to differentiate certain game levels encountered

by the subjects. Specifically, a transition from D to E1, or from E1 to D is detectable, as long as the

subjects have been in a sufficiently long rest period R1 prior to playing the first game.

We note also that the above findings show consistency with respect to published work as

discussed in the Introduction. However, the main reason for analyzing pNN50 here is to treat it as

a baseline metric together with the performance metrics, and to study how those metrics relate to

subjects’ behavioral metrics.
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6.4.2 Performance Metrics: Number of Strokes and Number of Assignments

The average of # of strokes (Figure 6.2a) and # of assignments (Figure 6.3) are signifi-

cantly affected by changes in game-difficulty in Data Set 2 and Data Set 3 (with observed powers

around 0.97), see Tables 6.1–6.2. In both sets of experiments, pair-wise comparisons reveal that #

of strokes (Figure 6.2a-6.2b) and # of assignments in D (Figure 6.3a-6.3b), on average, are signifi-

cantly lower than that of the same metric values for E1 and E2 (p < 0.05). Also the average of these

two metrics for E1 do not significantly differ from the same metrics calculated for E2, see Tables

6.1–6.2.
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Figure 6.2: The average values of Number of Finger-strokes for each game-level across all

subjects who participated in Data Set 2 (left) and in Data Set 3 (right).

The error-bar represents the standard deviation. Subjects rest during R1 and R2 consistent with the

previous subsections. Since subjects do not interact with the touchscreen, R1 and R2 are not shown

in the plots.

Consistent statistical results in Data Set 2 and Data Set 3 on the two performance metrics

indicate that the subjects are challenged by the complexity of the game D, and subjects perform

consistent playing in identical E1 and E2 games, even the two easy games are separated by either a

rest period or a D game. These results have strong correlation with pNN50 metric, and even improve

few of the inconsistencies detected in the pNN50 metric.

We remark here that it may sound as if the D game does not provide sufficiently many

opportunities to the subjects, for assigning the airplanes to the airports, compared with E1 and E2.

This is however not the case. In the E1 and E2 games, total of twenty airplanes merge into the screen
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Figure 6.3: The average values of Number of Trajectory Assignments for each game-level

across all subjects who participated in Data Set 2 (left) and in Data Set 3 (right).

The error-bar represents the standard deviation. Subjects rest during R1 and R2 consistent with the

previous subsections. Since subjects do not interact with the touchscreen, R1 and R2 are not shown

in the plots.

in 60 sec game duration with a new airplane entering the screen every three seconds. The same

arrival rate is used in the D game as well. Moreover, in the D game, whenever the subject makes a

correct airplane assignment, then the color indicators switch immediately otherwise the subject has

five seconds to make the subsequent correct assignment before the indicators switch colors again.

Based on this setting, so long as the subject can make a correct decision every three seconds, the

subject can have as many opportunities as in the E1, E2 games. Further, the AT game is designed

such that in the D game there is always at least one airplane on the screen that can be assigned to the

correct airport while at the same time respecting the game rules. Therefore, there is no idle time that

could drop subjects’ performance. Under these conditions, a very well trained player could handle

correct assignments of twenty airplanes in both D and E1, E2 games. Nevertheless, the subjects are

not very well trained, and due to increased cognitive load partly determined by their lack of training

and inexperience in the D game, they fail to achieve this high performance as measured by the above

described performance metrics.
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6.4.3 Behavioral Metrics

6.4.3.1 Mean Energy (ME) Metric

In both Data Set 2 and Data Set 3, subjects’ mean energy expenditure measured by ME

(Figure 6.4) is significantly affected by changes in game-difficulty (with observed powers slightly

larger than 0.96). Moreover, ME for the difficult game is significantly higher than that of the same

metric for E1 and E2 (p < 0.05) on average; and the average of ME for E1 does not significantly

differ from the same metric calculated for E2 in both Data Set 2 and Data Set 3, showing again

consistency, see Tables 6.1–6.2.
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Figure 6.4: The average values of Mean of Normalized Stroke Energy (ME) for each game-

level across all subjects who participated in Data Set 2 (left) and in Data Set 3 (right).

The error-bar represents the standard deviation. Subjects rest during R1 and R2 consistent with the

previous subsections. Since subjects do not interact with the touchscreen, R1 and R2 are not shown

in the plots.

Comparing the results on # of finger-strokes and ME, we find out that the subjects, on

average, draw fewer feasible trajectories but faster and longer in D than those in E1 and E2. That

is, the number of trajectories in both E1 and E2 are significantly higher, but are drawn in a slower

pace when compared with the difficult game. This is very likely due to the fact that the difficult

level induces frustration and higher task load on the subjects, and that the subjects are less efficient

in producing feasible trajectories due to the added game challenges in the difficult game.
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6.4.3.2 Sum of Energy (SE) Metric

Total energy expenditures normalized by inertia (SE) are studied in Data Set 2 and Data

Set 3. In contrast with ME, this metric does not render any statistically significant differences,

see Tables 6.1–6.2. It is likely that subjects on “average” spent similar amount of cumulative ef-

fort/energy in drawing trajectories within different game levels, presenting some similarity in total

effort put in different game levels. Nevertheless, limited statistical power on SE (β = 0.439 for

Data Set 2 and β = 0.627 for Data Set 3) prevents drawing strong conclusions. Further experiments

are required in future work to strengthen these discussions.
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Figure 6.5: The average values of Sum of Normalized Stroke Energy (SE) for each game-level

across all subjects who participated in Data Set 2 (left) and in Data Set 3 (right).

The error-bar represents the standard deviation. Subjects rest during R1 and R2 consistent with the

previous subsections. Since subjects do not interact with the touchscreen, R1 and R2 are not shown

in the plots.

Based on the MSD metric however, we observe that it matters how a subject’s effort is

allocated temporally, and its distribution over time, as discussed next:

6.4.3.3 Mean Stroke Delay (MSD)

We find out that average values of MSD (Figure 6.6) in Data Set 2 and Data Set 3 are

significantly affected by changes in game-difficulty (with observed powers 0.98− 0.99). Pair-wise

comparisons reveal that the average of MSD in D is significantly higher (Figure 6.6) than that of

the same metric in both E1 and E2 (p < 0.05). Moreover, the average of MSD in E1 does not
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significantly differ from the same metric calculated for E2 in both Data Set 2 and Data Set 3, see

Tables 6.1–6.2.
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Figure 6.6: The average values of Mean Stroke Delay (MSD) for each game-level across all

subjects who participated in Data Set 2 (left) and in Data Set 3 (right).

The error-bar represents the standard deviation. Subjects rest during R1 and R2 consistent with the

previous subsections. Since subjects do not interact with the touchscreen, R1 and R2 are not shown

in the plots.

Based on these consistent results, we can argue that subjects’ response times as a group in

drawing a new trajectory significantly differ on average, across three game-levels, possibly because

subjects need to be more strategic regarding how to assign the airplanes to the airports. This even-

tually demands more cognitive load and hence more decision making time. These results are also

consistent with Hick-Hayman Law and Fitt’s Law yet it is noteworthy that such a pattern is captured

from subjects group behavior, and in balanced experiments.

6.4.3.4 Mean Stroke Duration (MSDur)

Statistical results on the average values of mean stroke duration (MSDur) are not consis-

tent between Data Set 2 and Data Set 3. In Data Set 2, the average values of MSDur (Figure 6.7a)

are significantly affected by changes in game-difficulty, p < 0.05, see Tables 6.1–6.2:Data Set 2.

On the other hand in Data Set 3, MSDur (Figure 6.5b) does not differ significantly among the three

game-level groups, p = 0.157, see Tables 6.1–6.2:Data Set 3. However, similar to SE, we observe

limited statistical power on MSDur (β = 0.500 for Data Set 2 and β = 0.688 for Data Set 3), which

limits the significance of the statistical comparisons conducted.
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Figure 6.7: The average values of Mean Stroke Duration (MSDur) for each game-level across

all subjects who participated in Data Set 2 (left) and in Data Set 3 (right).

The error-bar represents the standard deviation. Subjects rest during R1 and R2 consistent with the

previous subsections. Since subjects do not interact with the touchscreen, R1 and R2 are not shown

in the plots.
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E1 Difficult E2

Metric Mean SD SEM Mean SD SEM Mean SD SEM

D
at

a
Se

t2

# Strokes 20.08 1.24 0.36 15.92 2.81 0.81 20.67 1.92 0.56

# Assignment 18.50 0.90 0.26 8.08 3.03 0.87 18.42 0.51 0.15

SE∗ 7.49 1.79 0.52 11.63 5.11 1.48 7.71 2.40 0.69

ME∗ 0.37 0.09 0.02 0.73 0.26 0.07 0.37 0.10 0.03

MSD 1.98 0.24 0.07 2.89 0.60 0.17 2.02 0.24 0.07

MSDur 0.84 0.15 0.04 0.64 0.17 0.05 0.70 0.16 0.05

pNN50 22.05 10.75 3.10 15.56 15.14 4.37 22.13 14.74 4.26

D
at

a
Se

t3

# Strokes 20.30 1.48 0.43 16.10 3.18 0.92 20.50 1.73 0.50

# Assignment 18.83 0.39 0.11 7.00 2.89 0.83 18.75 0.45 0.13

SE∗ 9.69 8.80 2.54 11.7 8.18 2.36 7.66 4.47 1.29

ME∗ 0.47 0.42 0.12 0.70 0.34 0.97 0.37 0.20 0.06

MSD 1.95 0.29 0.08 2.69 0.56 0.16 1.87 0.28 0.08

MSDur 0.84 0.22 0.06 0.73 0.20 0.06 0.90 0.34 0.10

pNN50 21.05 15.96 4.60 6.44 6.21 1.79 14.3 13.49 3.89

Table 6.1: Mean, standard deviation (SD), and standard error of the mean (SEM) for the

physiological and behavioral metrics in different game-levels.
∗The values are ×1E08.
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6.5 Summary

This chapter is on the study of a series of behavioral metrics pertaining to players’ touch

behavior and decision making times in a touch-screen game and in relation with baseline metrics,

namely, task performance metrics and heart rate variability metric pNN50. Specifically, we answer

(i) how well subjects play the game based on successful completion of tasks, (ii) how much ef-

fort/energy subjects put in drawing trajectories on the touch screen where the game is presented,

and (iii) how a subject’s response time/reaction time delays are affected by game difficulty.

Two sets of experiments are conducted to investigate these metrics. Based on experimen-

tal data obtained from 12 subjects in the first set, the average values of pNN50 computed using

the recorded heart rate signal, and further the average values of the performance metrics, namely,

# strokes, and # of assignments; and behavioral metrics, namely, ME, and MSD showed statisti-

cally significant variations across easy and difficult levels of the game, with no differences between

identical easy games. In the second set, another 12 subjects participated; this time in balanced

experiments between easy and difficult game levels. The results were consistent with what was ob-

tained in the first set of experiments, concluding that the metrics ME and MSD well correlate with

performance metrics (# strokes, # of assignments) as well as with pNN50. Therefore, regardless

of the order of the game difficulty, ME and MSD metrics could be reliably used to infer task load

changes, which can arise by a number of reasons including lack of training.

Results of the study here provide evidence that behavioral metrics especially ME and

MSD can be utilized in future studies to differentiate between difficult and easy tasks, and to detect

mental workload changes, and thereby subjects’ inexperience within the difficult game; possibly

via real time statistical inferences, and even across different tasks. Finally, additional experiments

are needed to strengthen the statistics on SE and MSDur metrics in order to draw more reliable

conclusions.
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RELATING SUBJECTS’

BEHAVIORAL PATTERN TO GAME

INEXPERIENCE USING

CLASSIFICATION ALGORITHMS

7.1 Introduction

In Chapter 6, a series of behavioral metrics are studied. These metrics pertain to players’

touch behaviors and decision making times in the game, and are in close relation with baseline

metrics, namely, task performance metrics and heart rate variability metric pNN50.

Based on experimental data obtained from Data Sets 2–3, the results of statistical analysis

provide evidence that behavioral metrics Finger-stroke Energy (ME) and Stroke Delay Time (MSD)

can be utilized to differentiate between difficult and easy tasks, and to detect vulnerability, possibly

via real time statistical inferences, and even across different tasks. Since strong statistical results

were not obtained on Stroke Duration metric (MSDure), we could not conclude whether or not this

metric can be used to infer task load changes.

Having showed the reliability of the behavioral metrics in differentiating the effect of men-

tal workload increase on subjects’ behavioral patterns as manifested by inexperience, in this chapter,

we use the the finger-stroke metrics from Data Sets 2–3 in order to create a “person-independent

model” aiming to distinguish subject’s mental workload increases in real-time. Further we would
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like to investigate the validity of this fitted model on a set of new subjects (Data Set 4) to find out

how well this fitted model could reach similar results in differentiating between difficult and easy

tasks, and to potentially detect game inexperience.

This chapter is organized as follows: (i) First, we introduce the (behavioral metrics) vari-

ables used to train a model. (ii) This is followed by listing the learning methods we use to train

the finger-stroke data. (iii) The analysis which lead us to finding the best fitted model comes next.

(iv) Further, we put the model to test in real-time using Data Set 4 to investigate the validity of the

fitted model. (v) We improce the accuracy of the model taking advantage of the variability in the

classifier.

7.2 Behavioral Metrics Classification

The finger-stroke data extracted from Data Sets 2–3, are selected for the model fitting

(training data). The data includes three variables (features): X1 = Finger-stroke Energy, X2 =

Stroke Delay Time, X3 = Stroke Duration, measured during the whole game segment (60 secs), see

Chapter 6. Due to lack of statistical power in statistical analysis, we could not conclude whether or

not the Stroke Duration can differentiate between difficult and easy tasks along with Finger-stroke

Energy and Stroke Delay Time. Here, we would like to investigate the effect of Stroke Duration

feature in training a model when compared with the case where this feature is excluded and only

Finger-stroke Energy and Stroke Delay Time data are used.

The training data consists of 1289 rows, which is divided into 2 groups: (a) 360 rows of

data that are extracted from the difficult game, labeled Difficult. (b) 929 rows of data extracted from

both E1 and E2 games, labeled Easy1. Prior to the analysis, the X1 feature is normalized where all

the values inX1 is divided by the 1E09 to have all theX1 values lie between 0 and 1. For behavioral

pattern inference, MATLAB 2014b is used to train classifiers (model fitting) using various learning

methods, namely, discriminant analysis, naive Bayes classifiers, decision trees, and support vector

machine (SVM), which are briefly explained next:

Discriminant Analysis Discriminant analysis assumes that different classes generate data based

on different Gaussian distributions. To train (create) a classifier, the fitting function estimates the

parameters of a Gaussian distribution for each class. To predict the classes of new data, the trained
1The finger-stroke data extracted from E1 and E2 showed they are not statistically significant by different. Hence,

we combined the two data sets.
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classifier finds the class with the smallest misclassification cost [37]. We used four different types

of discriminant analysis, namely, Linear Discriminant Analysis (LDA), Quadratic Discriminant

Analysis (QDA), Diagonal Linear Discriminant Analysis (DLDA), and Diagonal Quadratic

Discriminant Analysis (DQDA). DLDA and DQDA are similar to LDA and QDA, but with diag-

onal covariance matrix estimates. These diagonal choices are specific examples of a naive Bayes

classifier [86], as described next, because they assume the variables are conditionally independent

given the class label.

Naive Bayes classifiers are among the most popular classifiers. While the assumption of class-

conditional independence between variables is not true in general, naive Bayes classifiers have been

found to work well in practice on many data sets [96].

The naive Bayes classifies data in two steps: (a) training step in which by using the

training data, the method estimates the parameters of a probability distribution, assuming predictors

are conditionally independent given the class. (b) in prediction step, for any unseen test data, the

method computes the posterior probability of that sample belonging to each class. The method then

classifies the test data according the largest posterior probability.

The training step in naive Bayes classification is based on estimating P (X|Y ), the prob-

ability or probability density of predictors X given class Y . The naive Bayes classification model

provides support for various distributions. In this study we used the following distributions to clas-

sify the finger-stroke data: (i) Normal (Gaussian) Distribution (NB) is appropriate for predictors

that have normal distributions in each class. For each predictor we model with a normal distribution,

the naive Bayes classifier estimates a separate normal distribution for each class by computing the

mean and standard deviation of the training data in that class. (ii) Kernel Distribution (KD) is ap-

propriate for predictors that have a continuous distribution. It does not require a strong assumption

such as a normal distribution and can be used in cases where the distribution of a predictor may be

skewed or have multiple peaks or modes. It requires more computing time and more memory than

the normal distribution. For each predictor we model with a kernel distribution, the naive Bayes

classifier computes a separate kernel density estimate for each class based on the training data for

that class. By default the kernel is the normal kernel, and the classifier selects a width automatically

for each class and predictor. The software supports specifying different kernels for each predictor,

and different widths for each predictor or class [64].
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Decision Tree (DT) is a commonly used machine learning technique that uses a divide-and-

conquer approach to classify testing data [15]. In other words, a decision tree is a set of simple

rules. Decision trees are also nonparametric because they do not require any assumptions about the

distribution of the variables in each class. During the learning stage, the tree structure is constructed

with internal nodes and leaves. Internal nodes represent the test conditions while the leaves repre-

sent the classification results. When the Decision Tree is being constructed, the most informative

feature (with a higher information gain) will be used near the root [27].

Support Vector Machine (SVM) is a classifier that performs classification by constructing a

high-dimensional hyper-plane [17]. The constructed high-dimensional hyper-plane is optimized

to separate the testing data into two classes. SVM also allows different types of kernel functions

to transform testing data points into a higher dimensional space and make the transformed data

easier to be classified. Since SVM has recently become a popular machine learning technique for

classification, we are interested in investigating how well it classifies our training data, and then if

selected as the best fitted model, what its performance will be in our testing data set (Data Set 4).

7.2.1 Model Fitting Analysis on Data Sets 2–3

The classification analysis procedure followed to train a person-independent model is

explained next:

(a) The finger-stroke features from Data Sets 2–3 are first classified using all learning algo-

rithms summarized above, and then for each algorithm the resubstitution error on the training

set is computed. Resubstitution error is the misclassification error which is the proportion of

misclassified observations to the total number of observations.

(b) For each learning algorithm, the confusion matrix on the training set is also constructed.

A confusion matrix contains information about known class labels and predicted class labels.

Generally speaking, the (i,j) element in the confusion matrix is the number of samples whose

known class label is class i and whose predicted class is j. The diagonal elements represent

correctly classified observations.

(c) For each classification analysis, the true test error (generalization error), which is the

expected prediction error on an independent set is calculated2. This testing is very important
2Notice, the re-substitution error will likely underestimate the test error.

110



www.manaraa.com

CHAPTER 7. BEHAVIORAL PATTERN TO INEXPERIENCE IN REAL-TIME

as it shows the generalization capability of the stroke features fitted model. To this purpose,

a well-known method “stratified 10-fold cross-validation” is applied to estimate the test error

on classification algorithms. It randomly divides the training set into 10 disjoint subsets. Each

subset has roughly equal size and roughly the same class proportions as in the training set.

One subset is removed, the classification model is trained using the other nine subsets and

used to classify the removed subset.

(d) Finally, the fitted model with the lowest generalization error is selected to be tested on

Data Set 4.

The classification accuracy of each of the classifiers described in Section 7.2 is evaluated

using two types of feature combinations: (i) the first type of feature combination includes Finger-

stroke Energy, and Stroke Delay Time (X1, and X2); and with the goal of investigating the effect of

Stroke Duration feature in training a model (ii) the 2nd type of feature combinations includes this

feature along with Finger-stroke Energy, and Stroke Delay Time (X1, X2, and X3).

Table 7.1 lists the re-substitution error for each algorithm on the training set (Data Sets 2–

3) computed using two types of feature combinations. We found that the two lowest re-substitution

errors are computed using the SVM and DT classifiers (0.0613, and 0.0628 respectively) with the

all feature combinations (X1, X2, and X3).

Features LDA QDA DLDA DQDA NB KD DT SVM

X1, X2 0.2196 0.2048 0.2064 0.2141 0.2063 0.1722 0.0791 0.0613

X1, X2, X3 0.2149 0.1846 0.2118 0.1994 0.1994 0.1512 0.0628 0.0613

Table 7.1: Re-substitution error for all classifiers and different feature combinations.

Re-substitution error is the misclassification error which is the proportion of misclassified obser-

vations to the total number of observations, with X1 = Finger-stroke Energy, X2 = Stroke Delay

Time, and X3 = Stroke Duration.

On Table 7.2, further information is provided about how well the fitted model using a

given learning algorithm correctly classifies total observations (360 rows of data that are labeled

Difficult, and 929 rows of data are labeled Easy). For example, of the 1289 training observations,

6.12% or 79 observations are misclassified by the SVM when all the features, X1, X2, and X3, are

included.
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Classification Algorithm

LDA QDA DLDA DQDA NB KD DT SVM

features D E D E D E D E D E D E D E D E

D 99 261 144 216 110 250 143 217 143 217 178 182 298 62 282 78
X1, X2

E 22 907 48 881 26 903 49 880 49 880 40 889 40 889 1 928

D 113 247 168 192 115 245 147 213 147 213 197 163 322 38 286 74
X1, X2, X3

E 30 899 46 883 28 901 44 885 44 885 32 897 43 886 5 924

Table 7.2: Confusion matrix for the combination of all classifiers and different feature combi-

nations.

The grey cells highlight correctly recognized instances (true-positives). X1 = Finger-stroke Energy,

X2 = Stroke Delay Time, and X3 = Stroke Duration.

Since the re-substitution error will likely overestimate the accuracy of a given algorithm,

to select the best fitted model, we are more interested in the test error (generalization error) of the

learning algorithm, which is the expected prediction error on an independent set. In this case, since

we do not have another labeled data set where all the finger-stroke data are known and labeled,

a stratified 10-fold cross-validation is chosen for estimating the test error on classification algo-

rithms. Table 7.3 demonstrates the setup to to generate 10 disjoint stratified subsets for 10-fold

cross-validation analysis.

Num Observations 1289

Num Test Sets 10

Train Size 1161 1160 1160 1160 1160 1160 1160 1160 1160 1160

Test Size 128 129 129 129 129 129 129 129 129 129

Table 7.3: A stratified 10-fold cross-validation setup.

The setting is used to estimate the test error on classification algorithms.

Figure 7.1 plots the results of using 10-fold cross validation. For all classifiers, excluding

Stroke Duration data, X3, reduces in the classification accuracy. This provides evidence that Stroke

Duration, along with Finger-stroke Energy and Stroke Delay Time, help the classification accuracy

in differentiating between difficult and easy tasks. We also found that the best classification accuracy

(83.90%), is obtained from using the KD classifier with the all feature combination (X1, X2, and

X3). The 2nd and 3rd best classification accuracies are for QDA and the DT classifiers (81.07%, and

80.76% respectively), see Table 7.4. Notice that the structure of the decision tree uses the energy

112



www.manaraa.com

CHAPTER 7. BEHAVIORAL PATTERN TO INEXPERIENCE IN REAL-TIME

LDA QDA DLDA DQDA NB KD DT SVM

T
e
s
t 

A
c
c
u

ra
c
y
 (

1
0
0
 -

 t
e
s
t 

e
rr

o
r)

%

0

20

40

60

80

100 X1, X2

X1, X2, X3

Figure 7.1: Accuracy of the 10-fold cross validation of all classifiers using different feature

combinations.

X1 = Finger-stroke Energy, X2 = Stroke Delay Time, and X3 = Stroke Duration.

of the x-axis from the Stroke Delay Time data, X2, as the root test condition, see Figure 7.2. It

proves that touch delay information provides higher information gain in the decision tree learning

stage. Table 7.2 shows more details of the cross validation results on 1200 samples. The grey cells

highlight correctly recognized instances (true-positives).

Features LDA QDA DLDA DQDA NB KD DT SVM

X1, X2 78.05 79.29 78.74 79.36 79.36 81.82 77.81 75.02

X1, X2, X3 78.28 81.07 78.51 79.83 79.83 83.90 80.76 79.98

Table 7.4: Accuracy of all classifiers using different feature combinations.

The accuracy is simply calculated using (1− Cross Validation Error) ×100.

7.3 Re-construction: Validating the Fitted Models on New Experi-

mental Data

Having computed the generalization error of all learning algorithms using all combina-

tions of the three finger-stroke features, KD is found to be the best fitted model on Data Sets 2–3,

with the least amount of error in classifying the touch behavior data, see Section 7.2.1. In this Sec-
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Difficult

Difficult Difficult

Difficult Easy Difficult Difficult Easy Difficult

Difficult Easy Difficult

Easy

Difficult Easy

x2 < 3.00845   

x3 < 0.38335   x1 < 0.0517075   

x3 < 0.325   x1 < 0.0692143   x3 < 0.54165   

x2 < 2.1417   x1 < 0.00499749   x1 < 0.162903   x2 < 4.60005   

x2 < 0.72505   x3 < 1.325   

x3 < 0.675   

x2 < 2.54175   

  x2 >= 3.00845

  x3 >= 0.38335   x1 >= 0.0517075

  x3 >= 0.325   x1 >= 0.0692143   x3 >= 0.54165

  x2 >= 2.1417   x1 >= 0.00499749   x1 >= 0.162903   x2 >= 4.60005

  x2 >= 0.72505   x3 >= 1.325

  x3 >= 0.675

  x2 >= 2.54175

Figure 7.2: The structure of the decision tree classifier using all three features.

X1 = Finger-stroke Energy, X2 = Stroke Delay Time, and X3 = Stroke Duration. The decision

tree (DT) classifier the way it is constructed, uses the energy of the x-axis from the Stroke Delay

Time data, X2, as the root test condition.

tion, the results of the prediction analysis using the KD classifier is presented, in order to answer

”how well the this classifier, as a person-independent model, could distinguish the different levels

of the game with different subjects?”

7.3.1 Adaptive Game: Implementing the KD Classifier in the Game

The trained KD classifier, calibrated with Data Sets 2–3 by using the three features, X1,

X2, and X3, is put to test in Data Set 4, see Sections 3.3–3.4, in order to study its validity. With

this purpose, the KD classifier is implemented in the game which is used to conduct a new set of

experiments (Data Sets 4) and perform real-time classification as subjects play the game. That is,

this new version of the game is capable of predicting whether the subject plays the Difficult game

or the Easy one, using the touch behavior metrics. Specifically, after touch behavior metrics of each

finger-stroke are calculated first, and then these metrics are passed into the KD classifier in order to
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predict what game level the subject is playing. Notice, since one of the metrics for the classification

is the delay time in between two consecutive finger-strokes, X2, the learning algorithm is triggered

after the second finger-stroke is made by the player. All the KD classifier predictions along with

their corresponding touch behavior metrics, and the expected/desired known labels of each (easy or

difficult) are recorded for further analysis.

7.3.2 Experimental Protocol

11 Subjects participated in our study (Data Set 4), see the experimental protocol details

in Sections 3.3–3.4. Notice that none of the subjects have had any prior experience with any of

the games. Subjects play the game for ten trials. In one trial, the subjects play one easy, and one

difficult level of the game. The order of the games are randomly selected, and the subjects are not

made aware of what the upcoming game level will be. Since in the experimental setup there is no

resting time considered, the subjects are therefore instructed to rest in between consecutive trials in

case they need to relax.

All the KD classifier predictions, and the expected/desired known labels are recorded for

further analysis. The labels are simply the game level in which finger-strokes are made. In the end,

we have a two column matrix, in which one column lists the predictions (E or D), and the other

column holds the expected prediction of the game level (E or D).

7.3.3 Analysis of Experimental Results when KD is Implemented in the Game

Having recorded all the predictions made by the KD classifier, we next (a) investigate

the validity of the KD classifier tested on Data Set 4, and further, (b) calculate how well this fitted

model using Data Sets 2–3, could reach similar results in differentiating between difficult and easy

tasks, and to detect subjects’ inexperience in real-time. Specifically, we are interested to find out

how accurate the predictions are. In other words, does the prediction match with the game label or

not?

Figures 7.3–7.4 demonstrate the KD prediction accuracy for the two sample subjects

across all trials played our game. The prediction accuracy clearly differs for the two subjects. We

find out that for subject 1 (Figure 7.3) the overall prediction accuracy is 82.18%, whereas for sub-

ject 4 (Figure 7.4) the KD classifier could correctly distinguish the levels of the game by 58.99%.

Overall, the performance of the implemented KD classifier for all the easy games is 94.27% and

98.33%, respectively for Subjects 1 and 4. However, in all difficult games, the prediction accuracy
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is not as good: it reduces to 67.30% for Subject 1, and further it becomes worse for Subject 4 when

it could correctly predict 18.75% of all the finger-strokes made across all the difficult game.

Finger-stroke
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Figure 7.3: The performance of KD Classifier for subject 1 in Data Set 4.

CORRECT: when the prediction result do matches with the game level. WRONG (incorrect): when

the prediction result does not matches with the game level.

Figure 7.5 depicts the overall performance of the KD classifier in Data Set 4. As depicted

in the figure, the performance of the fitted model drops significantly in the difficult games when

compared with the easy game. On average, considering both game levels, KD classifier could

correctly classify the finger-stroke data by 65.67% ± 6.23%, Figure 7.6. The performance of KD

algorithm in Data Set 4 is lower than its accuracy level, 83.90% obtained when calibrated using

Data Sets 2–3, see Section 7.2.1. Moreover, for all the easy games, the fitted model, KD, correctly

distinguishes the finger-stroke data of Data Set 4 by 95.94%± 2.38%, on average, Figure 7.6. The

performance degrades significantly to 32.62%±12.93%, on average, in all the difficult game, Figure

7.6.
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Figure 7.4: The performance of KD Classifier for subject 4 in Data Set 4.

CORRECT: when the prediction result do matches with the game level. WRONG (incorrect): when

the prediction result does not matches with the game level.

7.3.4 Re-construction of Data Set 4 Using all Classifiers Calibrated on Data Sets 2–3

As the KD classier did a poor performance in re-construction of the finger-stroke data for

the difficult level in Data Set 4, we decided to test the rest of the classifiers trained and calibrated

using the Data Sets 2-3.

Since we have recorded all the features corresponding to the stroke data in Data Set 4, we

could simply feed those features offline into our classifier to predict whether the trajectory is drawn

in the easy game or the difficult level. This process, in fact, is similar to implementation of the KD

classier in the game: the finger-stroke data features, X1, X2, X3, is being fed to the classifies one

after each other and then classifier predicts the output.
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Figure 7.5: The overall performance of KD Classifier in Data Set 4 across all subjects.

ALL: Average of the KD classification accuracy across all easy and difficult games. EASY: Av-

erage of the KD classification accuracy across all easy games. DIFFICULT: Average of the KD

classification accuracy across all difficult games.

7.3.5 Analysis of Experimental Results Comparing all the Classifiers on Data Set 4

All the predictions of each classifier are recorded for further analysis. Figure 7.7 depicts

the overall performance of all classifiers, on average, in Data Set 4. As depicted in the figure,

the sensitivity of all the classifier models drops significantly in the difficult game when compared

with the easy level. On average, the SVM could correctly classify the finger-stroke data with an

accuracy of 69.75% ± 4.18%. Next are, DT, NB (and DQDA), and KD with 67.07% ± 4.04%,

66.34% ± 4.29%, and 65.67% ± 6.23% accuracy, respectively, see Table 7.5. The sensitivity of

all the classifiers, similar to KD, are not as well as their performance in the easy games. In Data

Set 4, DT did the best in correctly classifying the finger-stroke data from the difficult game with
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Figure 7.6: The overall performance of KD Classifier in Data Set 4, on average, across all

subjects.

ALL: Average of the KD classification accuracy across all easy and difficult games. EASY: Av-

erage of the KD classification accuracy across all easy games. DIFFICULT: Average of the KD

classification accuracy in all difficult games.

an accuracy of 46.97% ± 8.83%. Next, are SVM, NB (and DQDA), and KD with 44.85 ± 8.63,

34.17± 9.13, and 32.62± 12.93 accuracy, respectively, see Table 7.5.

The experimental results on the sensitivity of all the classifier in Data Set 4 reveals that

all calibrated models can reliably classify the finger-strokes data in the easy game. However, in the

difficult game, the sensitivity of the classifiers in distinguishing the game level is not satisfactory.

That is, further analysis is required in order improve the fitted model accuracy level when tested in

the difficult game. In the next section we address this in more details.

7.3.6 Re-configuration: Improvements based on Classifiers Variability

In order to improve the performance of the fitted models, especially in the difficult game,

we need to study the prediction data in further details. With this aim, we study the finger-stroke

classification results in two different ways:
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Figure 7.7: The overall performance of all Classifier in Data Set 4, on average, across all

subjects.

ALL: Average of the classification accuracy across all easy and difficult games. EASY: Average

of the classification accuracy across all easy games. DIFFICULT: Average of the classification

accuracy in all difficult games.

Fitted Model All Easy Difficult

LDA 58.61± 6.27 97.01± 2.46 16.46± 12.76

QDA 67.17± 4.28 95.42± 2.26 36.17± 8.99

DLDA 59.21± 5.85 97.06± 2.28 17.71± 11.85

DQDA 66.34± 4.29 95.66± 2.64 34.17± 9.13

NB 66.34± 4.29 95.66± 64 34.17± 9.13

KD 65.67± 6.23 95.94± 2.38 32.62± 12.93

DT 67.07± 4.04 85.53± 3.54 46.97± 8.83

SVM 69.75± 4.18 92.57± 2.68 44.85± 8.63

Table 7.5: Accuracy of all classifiers using three features, X1, X2, X3, in Data Set 4.

The accuracy is simply the ratio of the number of predictions match with the desired output to the

total predictions. ALL: Average of the classification accuracy across all easy and difficult games.

EASY: Average of the classification accuracy across all easy games. DIFFICULT: Average of the

classification accuracy in all difficult games.

Case 1: We know the desired/expected label for each prediction made by the classifier. Therefore

we have a clear understating whether or not a classification result (prediction) is correct or not. With
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this knowledge, we investigate “how often an incorrect prediction is made within a game?” In other

words, we aim to find the frequency of the occurrence of incorrect predictions.

In this case, we are aware of the desired predictions, which are the game levels. Therefore,

we can simply construct a list, namely prediction accuracy, in which 0 represents an incorrect

prediction, and 1 represents a correct one. To answer the above question, we first construct the

prediction accuracy lists for all the games across all the subjects. Next, the number of incorrect

predictions are counted. Then, we record how many times this many incorrect predictions happen

across all games, regardless of the order of incorrect predictions.

We should note that in this analysis, we only consider the first 5 predictions (the first 6

finger-strokes) within a game. That is, the number of incorrect predictions within each game range

from 0, meaning all predictions are correct and match with the game level; to 5, where all the

predictions results are incorrect.

Case 2: We do not know the desired/expected label for each prediction made by the classifier.

Here, we are investigating how consistent the prediction results are within a game level. In other

words, we would like to answer: “how often the prediction results switch from easy to difficult, or

from difficult to easy within a game?” In this analysis we consider (2a) all the finger-strokes in a

game, and (2b) the first 5 predictions (the first 6 finger-strokes) within a game.

For the both cases above, Case 2a and Case 2b, we count the number of times the consec-

utive prediction results are switched within a game. Next, the occurrence of this many prediction

switches are recorded across all specific game levels.

Notice that for the Case 2b analysis, as we only consider the first 5 predictions (the first 6

finger-strokes) within a game, the number of prediction switches range from 0, meaning all predic-

tions are consistent; to 4, where every other prediction results are switching.

The overarching goal of all the study cases mentioned above, i.e., Case 1, Case 2a, and

Case 2b, is to understand whether the classification results on Data Set 4 are following known

distributions or not, and whether the predictions results in the easy games are different than those of

in the difficult game. That is, we have more information in hand to check how likely each prediction

is correct.

All the analysis are conducted using Statistics Toolbox (V9.1) in MATLAB R2014b. The

goodness of fit in distribution fitting is determined using the Bayesian information criterion (BIC)3,
3or Schwarz criterion (also SBC, SBIC). It is based, in part, on the likelihood function and it is closely related to the

Akaike information criterion (AIC).
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where the model with the lowest BIC is preferred [117].

7.3.7 Improving the Re-configuration Analysis: Results and Discussion

Here, we present the results of the analysis mentioned in the previous section, when imple-

mented on SVM, DT, KD, and DQDA classifiers when calibrated in Data Sets 2–3 usingX1, X2, X3

features.

Case 1: The frequency of the occurrence of incorrect predictions in the first five prediction results

across all easy games, using KD, DQDA, DT, and SVM (Figures 7.8a, 7.9a, 7.10a, and 7.11a,

respectively) are different than in all the difficult game levels (Figures 7.8b, 7.9b, 7.10b, and 7.11b,

respectively).

For example, using KD algorithm, across all easy game levels in Data Set 4, we observe

91 times that all the first 5 prediction results are correct, Figure 7.8a. This number degrades signif-

icantly across all difficult games where for only 3 times all the first five KD classification results

predicted the difficult game level correctly, Figure 7.8b. Moreover, when DQDA model is used,

for 22 times, one incorrect classification result are observed in all easy games, Figure 7.9a whereas

in all difficult games there are only 9 times that one incorrect prediction exists among the first five

classification results, Figure 7.9b. Finally, when DT is used, in all easy games, we observe three

incorrect prediction results only three times within the first five predictions, Figure 7.10a. This

number increased dramatically across all difficult games where we observe the occurrence of three

incorrect predictions 32 times, Figure 7.10b.

The occurrence of the incorrect classification results across all easy games follow an ex-

ponential distribution (µ = 0.23, µ = 0.22, µ = 0.7, and µ = 0.34, respectively for KD, DQDA,

DT, and SVM), whereas the occurrence of the incorrect prediction results across all difficult games

when KD and SVM are used, follow the Extreme Value distribution (µ = 3.99, σ = 1.07; and

µ = 3.36, σ = 1.15) respectively for KD (Figure 7.8c) and SVM (Figure 7.11c); when DQDA is

used (Figure 7.9c) it follows the Generalized Extreme Value distribution (k = −0.45, σ = 1.25, µ =

2.70), and finally it follows the Normal distribution (σ = 1.36, µ = 2.83) when DT is used (Figure

7.10c). Table 7.9 lists the evaluation results of the above fitted distributions. Based on the evalua-

tion results for the cumulative density functions we clearly understand how likely it is possible to

observe specific number of incorrect predictions results in the first five classifications in the easy or

the difficult game levels. For example, the probability of observing one or more incorrect prediction
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Figure 7.8: Occurrence of incorrect predictions within a game for the first five predictions

using KD in Data Set 4.

Top-left: frequency of incorrect prediction results across all easy games. Top-right: frequency

of incorrect prediction results across all difficult games. Bottom-left: the best fitted Probability

Density Function (PDF) on frequency of incorrect prediction results across all easy and difficult

games. Bottom-right: the best fitted Cumulative Density Function (CDF) on frequency of incorrect

prediction results across all easy and difficult games.

results among the first 5 classifications is 1%, 1.2%, 34%, and 5.4% when DQDA, KD, DT, and

SVM are used respectively, in the easy game. However, there is 94%, 94%, 91%, and 88% chance

to find one or more incorrect predictions in the difficult game among the first five predictions, when

DQDA, KD, DT, and SVM are used respectively, see Table 7.9.
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Figure 7.9: Occurrence of incorrect predictions within a game for the first five predictions

using DQDA in Data Set 4.

Top-left: frequency of incorrect prediction results across all easy games. Top-right: frequency

of incorrect prediction results across all difficult games. Bottom-left: the best fitted Probability

Density Function (PDF) on frequency of incorrect prediction results across all easy and difficult

games. Bottom-right: the best fitted Cumulative Density Function (CDF) on frequency of incorrect

prediction results across all easy and difficult games.

Case 2a: We observed that the classification results are more consistent in the easy games, when

KD and DQDA are used, Figures 7.12a, 7.13a, whereas for all the models in the difficult game

levels, we observe significant inconsistency in consecutive predictions results, Figures 7.12b, 7.13b,

7.14b, 7.15b, respectively for KD, DQDA, DT, and SVM. For example, when KD is used, across
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Figure 7.10: Occurrence of incorrect predictions within a game for the first five predictions

using DT in Data Set 4.

Top-left: frequency of incorrect prediction results across all easy games. Top-right: frequency

of incorrect prediction results across all difficult games. Bottom-left: the best fitted Probability

Density Function (PDF) on frequency of incorrect prediction results across all easy and difficult

games. Bottom-right: the best fitted Cumulative Density Function (CDF) on frequency of incorrect

prediction results across all easy and difficult games.

all easy games in Data Set 4, the classification results predict easy game level consistently for 54

times, Figure 7.12a. However, in all the difficult game levels, we obtain only one case where all

the prediction results are correct, Figure 7.12b. Notice, the 0 index in the figures represents the

case when all the prediction results are consistent. Moreover, when SVM is used, across all easy
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Figure 7.11: Occurrence of incorrect predictions within a game for the first five predictions

using SVM in Data Set 4.

Top-left: frequency of incorrect prediction results across all easy games. Top-right: frequency

of incorrect prediction results across all difficult games. Bottom-left: the best fitted Probability

Density Function (PDF) on frequency of incorrect prediction results across all easy and difficult

games. Bottom-right: the best fitted Cumulative Density Function (CDF) on frequency of incorrect

prediction results across all easy and difficult games.

games, we find out that for 32 times the prediction results switch twice within a game, Figure

7.15a. This amount degrades significantly in the difficult games, where there is only 1 case when

the classification results switch twice, Figure 7.15b.

The frequency of the changes in consecutive prediction results across all easy game levels
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Figure 7.12: Frequency of changes in consecutive predictions using KD in Data Set 4.

Top-left: frequency of changes in consecutive predictions across all easy games. Top-right: fre-

quency of changes in consecutive predictions across all difficult games. Bottom-left: the best fitted

Probability Density Function (PDF) on frequency of changes in consecutive predictions across all

easy and difficult games. Bottom-right: the best fitted Cumulative Density Function (CDF) on

frequency of changes in consecutive predictions across all easy and difficult games.

follows the exponential distribution (µ = 1.30, µ = 1.46, and µ = 2.39), respectively when KD

(Figure 7.12c), DQDA (Figure 7.13c), and SVM (Figure 7.15c) are used. Moreover, when DT is

used, the frequency of the changes in consecutive prediction results across all easy game levels

follows the Generalize Extreme Value distribution (k = −0.15, σ = 2.31, µ = 3.33), Figure 7.14c.

The frequency of the changes in consecutive predictions across all difficult games follow the Normal
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Figure 7.13: Frequency of changes in consecutive predictions using DQDA in Data Set 4.

Top-left: frequency of changes in consecutive predictions across all easy games. Top-right: fre-

quency of changes in consecutive predictions across all difficult games. Bottom-left: the best fitted

Probability Density Function (PDF) on frequency of changes in consecutive predictions across all

easy and difficult games. Bottom-right: the best fitted Cumulative Density Function (CDF) on

frequency of changes in consecutive predictions across all easy and difficult games.

distribution (µ = 6, σ = 2.48;µ = 6.56, σ = 2.21;µ = 7.37, σ = 2.15; and µ = 7.23, σ = 2.17)

respectively when KD (Figure 7.12c), DQDA (Figure 7.13c), DT (Figure 7.14c), and SVM (Figure

7.15c) are used. Table 7.10 lists the evaluation results of the above fitted distributions. Based on

the evaluation results for the cumulative density functions we gain knowledge on how likely it is

possible to find inconsistency on the classification results in the easy or the difficult game levels.
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Figure 7.14: Frequency of changes in consecutive predictions using DT in Data Set 4.

Top-left: frequency of changes in consecutive predictions across all easy games. Top-right: fre-

quency of changes in consecutive predictions across all difficult games. Bottom-left: the best fitted

Probability Density Function (PDF) on frequency of changes in consecutive predictions across all

easy and difficult games. Bottom-right: the best fitted Cumulative Density Function (CDF) on

frequency of changes in consecutive predictions across all easy and difficult games.

For example, when the KD model is used in the easy game, the probability of observing two or more

inconsistent results among all consecutive predictions is 22%, however there is 95% chance to find

two or more inconsistent results in the difficult game among all consecutive predictions, see Table

7.9.
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Figure 7.15: Frequency of changes in consecutive predictions using SVM in Data Set 4.

Top-left: frequency of changes in consecutive predictions across all easy games. Top-right: fre-

quency of changes in consecutive predictions across all difficult games. Bottom-left: the best fitted

Probability Density Function (PDF) on frequency of changes in consecutive predictions across all

easy and difficult games. Bottom-right: the best fitted Cumulative Density Function (CDF) on

frequency of changes in consecutive predictions across all easy and difficult games.

Case 2b: Similar to the Case 2a study, when KD (Figure 7.16a), DQDA (Figure 7.17), and SVM

(Figure 7.19) are used, we observed that the classification results are more consistent in the easy

games, whereas in the difficult game levels, we witness significant inconsistency in consecutive

predictions results (Figures 7.16b, 7.17b, 7.18b, and 7.19b, respectively for KD, DQDA, DT, and

SVM). For example, across all easy games in Data Set 4, when KD is used, the first five classification
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results are predicting easy game level consistently for 91 times, Figure 7.16a. However, in all the

difficult game levels, for only 29 cases the first five classifications results are consistent, Figure

7.16b. Similar to Case 2a, the 0 index in the figures, represents the case when all the first five

prediction results are consistent. Moreover, when DQDA is used, across all easy games, we find

out that for 13 times the prediction results switch twice among the first five classifications, Figure

7.17a. This amount increases significantly in all the difficult games, Figure 7.17b, where there are

45 cases when the classification results among the first five predictions switch twice.

Similar to Case 2a, but considering only the first 5 predictions, the frequency of the incon-

sistency in consecutive prediction results across all easy games follows the exponential distribution

(µ = 0.31, µ = 0.34, µ = 1.01, andµ = 0.49), respectively when KD (Figure 7.16c), DQDA

(Figure 7.17c), DT (Figure 7.18c), and SVM (Figure 7.19c) are used. Moreover, across all difficult

games, the frequency of the inconsistency in consecutive classifications results follows Extreme

Value distribution (µ = 2.08, σ = 1.17; µ = 2.28, σ = 1.05), respectively when KD (Figure

7.16c), and DT (Figure 7.18c) are used. Moreover, when DQDA (Figure 7.17c), and SVM (Fig-

ure 7.19c) are used, the frequency of the inconsistency in consecutive classifications results follows

Normal distribution (µ = 1.79, σ = 0.98; µ = 1.75, σ = 1.02). Table 7.11 lists the evaluation

results of the above fitted distributions. Based on the evaluation results for the cumulative density

functions we understand how likely we observe inconsistency among the first five classification re-

sults within the easy or the difficult game level. For example, in the easy game, the probability of

observing one or more inconsistent results among the first five consecutive predictions is 3%, how-

ever there is 77% chance to observe one or more inconsistent results in the difficult game among the

first five consecutive predictions, see Table 7.9.

The results of the Case 1, Case 2a, and Case 2b studies can now be implemented in the

game in order to reconfigure the KD classifier. These results can hence be used along with the KD

classifier to gain insight on “the accuracy of prediction result within a specific game,” which in turn

can successfully improve the classification performance especially in the difficult game. Moreover,

results of Case 1 analysis can be used to understand the probability of the occurrence of the specific

number of incorrect predictions within a game among the first five predictions. In other words, if

we have the first five prediction results in hand, the results of the Case 1 analysis can determine how

likely these classification results are made in the easy game or the difficult one. For example, given

the first five prediction results as {c, w,w, c, c} where c represents the correct prediction, and w is

the incorrect classification, the results of the Case 1 analysis can determine these five predictions

result are made in the difficult game by 85% chance; but by less than 1% chance in the easy game,
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Figure 7.16: Frequency of changes in consecutive predictions for the first 5 predictions using

KD in Data Set 4.

Top-left: frequency of changes in consecutive predictions for the first 6 finger-strokes across all

easy games. Top-right: frequency of changes in consecutive predictions for the first 6 finger-strokes

across all difficult games. Bottom-left: the best fitted Probability Density Function (PDF) on fre-

quency of changes in consecutive predictions for the first 6 finger-strokes across all easy and difficult

games. Bottom-right: the best fitted Cumulative Density Function (CDF) on frequency of changes

in consecutive predictions for the first 6 finger-strokes across all easy and difficult games.

see Table 7.9. Recall also that Case 1 analysis results do not depend on the order of the incorrect

predictions. In other words, for the following classifications results: {w, c, w, c, c}, {w, c, c, c, w},
{c, c, c, w,w}, and {c, c, w, c, w}, we obtain the same likelihood mentioned above. That is, all of
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Figure 7.17: Frequency of changes in consecutive predictions for the first 5 predictions using

DQDA in Data Set 4.

Top-left: frequency of changes in consecutive predictions for the first 6 finger-strokes across all

easy games. Top-right: frequency of changes in consecutive predictions for the first 6 finger-strokes

across all difficult games. Bottom-left: the best fitted Probability Density Function (PDF) on fre-

quency of changes in consecutive predictions for the first 6 finger-strokes across all easy and difficult

games. Bottom-right: the best fitted Cumulative Density Function (CDF) on frequency of changes

in consecutive predictions for the first 6 finger-strokes across all easy and difficult games.

these five prediction results are made in the difficult game by 85% chance; but by less than 1% these

are the first five classification results in the easy game, see Table 7.9.

The results of the Case 2a and Case 2b analysis can be used to understand the proba-
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Figure 7.18: Frequency of changes in consecutive predictions for the first 5 predictions using

DT in Data Set 4.

Top-left: frequency of changes in consecutive predictions for the first 6 finger-strokes across all

easy games. Top-right: frequency of changes in consecutive predictions for the first 6 finger-strokes

across all difficult games. Bottom-left: the best fitted Probability Density Function (PDF) on fre-

quency of changes in consecutive predictions for the first 6 finger-strokes across all easy and difficult

games. Bottom-right: the best fitted Cumulative De-eps-converted-to.pdfnsity Function (CDF) on

frequency of changes in consecutive predictions for the first 6 finger-strokes across all easy and

difficult games.

bility of the occurrence of the specific number of inconsistent classification results in consecutive

predictions among all (Case 2a) or the first five (Case 2b) predictions made in a game level. That
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Figure 7.19: Frequency of changes in consecutive predictions for the first 5 predictions using

SVM in Data Set 4.

Top-left: frequency of changes in consecutive predictions for the first 6 finger-strokes across all

easy games. Top-right: frequency of changes in consecutive predictions for the first 6 finger-strokes

across all difficult games. Bottom-left: the best fitted Probability Density Function (PDF) on fre-

quency of changes in consecutive predictions for the first 6 finger-strokes across all easy and difficult

games. Bottom-right: the best fitted Cumulative Density Function (CDF) on frequency of changes

in consecutive predictions for the first 6 finger-strokes across all easy and difficult games.

is, having all or the first five prediction results at hand, results of Case 2a and Case 2b can help

determine how likely these classification results are made in the easy or the difficult level. For ex-

ample, given the first five prediction results as {E,D,E,E,E} where E represents the EASY, and
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D is DIFFICULT, we are observing that the prediction results switch twice: E to D for the first and

second predictions, and D to E for the second and the third predictions. Therefore results of the

Case 2b analysis can determine these five predictions are made in the difficult game by 39% chance;

but by less than 1% these are the first five classification results in the easy game, see Table 7.11.

The results of the Case 2a and Case 2b analysis do not depend on where the incon-

sistent results are made among all or among the first five classification results. In other words,

for the following classification results: {E,D,D,D,E}, {D,D,E,D,D}, {D,D,D,E,D}, and

{E,E,E,D,E}, Case 2b method evaluates the same likelihood as mentioned above. That is, all

of these five prediction results are made in the difficult game by 39% chance; but by less than 1%

probability, these are the first five classification results in the easy game, see Table 7.11.

Results of Case 1 can be used as a post reconfiguration method since we have the knowl-

edge of the desired prediction, and the results of Case 2a and Case 2b analysis can be directly

implemented in the game to improve the classification results in real-time. We should note that

Case 1 and Case 2b results are limited to use for the first five prediction results. That is, given the

limited number of classification results at hand, which are not necessarily made in the beginning

of a game level, further analysis are required in order to recognize the existing patterns in these

predictions to infer the specific game level that these classification results are made within.

The probability of the occurrence of the incorrect classification

Easy Difficult

# False Prediction DQDA KD DT SVM DQDA KD DT SVM

0 97.7778 96.8085 87.5 93.9759 2.2222 3.1915 12.5 6.0241

1 70.9677 72.7273 79.0323 67.4419 29.0323 27.2727 20.9677 32.5581

2 3.5714 12 32.2581 9.6774 96.4286 88 67.7419 90.3226

3 0 4.3478 8.5714 3.2258 100 95.6522 91.4286 96.7742

4 0 0 0 0 100 100 100 100

5 0 0 0 0 100 100 100 100

Table 7.6: The evaluation of the occurrence of the incorrect classification results among the

first five predictions using the histogram plots.

For each index in Figures 7.9a–7.9b, 7.8a–7.8b, 7.10a–7.10b, and 7.11a–7.11b, the bin sizes in the

Easy and Difficult games are combined and the probability is calculated.
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The probability of the inconsistency in consecutive classifications

Easy Difficult

# Switches DQDA KD DT SVM DQDA KD DT SVM

0 100 98.1818 85.7143 100 0 1.8182 14.2857 0

1 80 100 100 100 20 0 0 0

2 93.0233 85.7143 100 96.9697 6.9767 14.2857 0 3.0303

3 57.1429 16.6667 90 62.5 42.8571 83.3333 10 37.5

4 47.619 42.8571 70 72 52.381 57.1429 30 28

5 5.2632 18.75 42.1053 13.3333 94.7368 81.25 57.8947 86.6667

6 4.7619 0 51.7241 37.931 95.2381 100 48.2759 62.069

7 5.8824 0 13.6364 0 94.1176 100 86.3636 100

8 4 0 36.8421 12.5 96 100 63.1579 87.5

9 0 0 11.7647 0 100 100 88.2353 100

10 0 0 26.6667 11.1111 100 100 73.3333 88.8889

11 0 0 0 0 100 100 100 100

12 0 0 0 0 100 100 100 100

Table 7.7: The evaluation of the frequency of the inconsistency in consecutive classification

results using the histogram plots using the histogram plots.

For each index in Figures 7.13a–7.13b, 7.12a–7.12b, 7.14a–7.14b, and 7.15a–7.15b, the bin sizes in

the Easy and Difficult games are combined and the probability is calculated.

The probability of the inconsistency in consecutive classifications

Easy Difficult

# Switches DQDA KD DT SVM DQDA KD DT SVM

0 88.8889 75.8333 73.1343 85.7143 11.1111 24.1667 26.8657 14.2857

1 23.0769 24.2424 45.2381 28.8889 76.9231 75.7576 54.7619 71.1111

2 22.4138 21.2766 43.9024 31.0345 77.5862 78.7234 56.0976 68.9655

3 4.5455 12.5 28 8.3333 95.4545 87.5 72 91.6667

4 0 0 0 0 100 100 100 100

Table 7.8: The evaluation of the frequency of the inconsistency in consecutive classification

results among the first five predictions using the histogram plots.

For each index in Figures 7.17a–7.17b, 7.16a–7.16b, 7.18a–7.18b, and 7.19a–7.19b, the bin sizes in

the Easy and Difficult games are combined and the probability is calculated.
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7.4 Summary

Following Chapter 6, in this chapter the behavioral metrics variables, X1 = Finger-stroke

Energy, X2 = Stroke Delay Time, X3 = Stroke Duration, are selected from Data Sets 2–3 in order

to create a ”person-independent model” aiming to distinguish subject’s mental workload increase

in real-time arising due to their inexperience. Using the aforementioned behavioral features several

classifier algorithms are tested and the Kernel Density (KD) classifiers is found to have the best

performance in our experiments using 10-fold cross validation.

The fitted model with KD is implemented in the game to be used in another set of ex-

periments, Data Set 4, with different subject. Analyzing the experimental results showed that KD

classifier can correctly classify the finger-strokes made in all game levels by 65.67%, and in the

easy game by 95.94% accuracy. However, the performance of KD model degrades significantly to

32.62% in the difficult game.

Observing the KD performance in Data Set 4, we decided to reconstruct the Data Set

4 finger-stroke data using all the rest of the fitted models. The reconstruction results reveal that

the SVM model could distinguish the finger-stroke data across all game levels by 69.75%, and by

92.57% in the easy games alone. Moreover, DT performs better in the difficult game where its

accuracy is 46.97% when compared with the rest of the fitted models.

Next we investigate ways to improve the performance of the classifiers, especially for the

difficult game. For this, we take advantage of variability in classifier decisions. To this end, we

find the best fitted distributions on collect sequence prediction results across all easy and difficult

games. Evaluating the probability density functions (PDF) and the cumulative density functions

(CDF), we implement such information in order to reconfigure the corresponding classifier. Know-

ing “the probability of the accuracy of a given prediction result within a specific game,” we show

that accuracy of detecting the difficult game level can significantly improve. This shows that one

can successfully improve the fitted model performance in real-time especially in the difficult game

using classifier variability as a feature.
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Chapter 8

CONCLUSIONS AND FUTURE

DIRECTIONS

This dissertation has outlined the development of an affective sensing approach as well

as analysis of touch behavioral patterns to detect in real-time the mental states as well as mental

workload changes of subjects unfamiliar with certain tasks in a touch screen game.

For this, an open source air traffic (AT) game as well as a strategic experimental protocol

which could elicit different levels of mental workload by probing the inexperience aspect of vol-

unteers human subjects are developed. By conducting a series of human subjects experiments, the

experimental game is verified to indeed induce different levels of mental workload to the subjects.

We showed that subjects’ inexperience in an experimental task can manifest itself as obvi-

ous variations in physiological measurements, which can then be detected using affective computing

tools by non-invasive monitoring of the BVP and SC signals. Moreover, we find out that the affec-

tive sensing presents consistency on different experiments, benefiting from balanced game order,

and hence, subjects’ inexperience in a challenging task via the ensuing mental workload changes is

detectable.

More importantly, we proposed a new practical way to fuse electrodermal activity and

heart related measurements together in order to better evaluate human operator mental states without

any standard training procedure. This lead to a new metric called combined metric score (CMS)

which was calibrated based on metrics from our first pool of subjects, and then verified and tested

on different sets of subjects. Hence, CMS offers the potential to be used in future studies as a

single scalar quantity that could be used to make predictions on subjects’ inexperience and/or what
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difficulty levels the subjects are encountering while playing various game levels.

Observing limitations in using affective computing tools specifically in real-time mo-

tivated us to study human subjects touch behavioral patterns as indicators of mental workload

changes. Here, new sets of measurements mainly based on subjects’ finger-strokes data are pro-

posed, mainly related to the amount of effort invested in order to infer inexperienced subjects’

mental workload changes. To test the validity of proposed effort-related metrics, the analysis re-

sults are compared with affective computing results and also with known subjects’ performance

and NASA-TLX questionnaire results. Strong correlation between subject’s performance in famil-

iar/unfamiliar situations, i.e., changes in mental workload are observed with subjects’ physiological

and touch behavioral measurements.

The findings suggest that different levels of subjects’ overall performance are directly

correlated with the physiological measurements. In addition, we find out that lack of experience

in the presence of high mental workload produces remarkably different physiological responses,

which were also associated with performance.

Having showed the reliability of the behavioral metrics in differentiating the effects of

mental workload increase on subjects’ behavioral patterns, finger-stroke metrics are used to create

a fitted model aiming to built an adaptive environment. The touch based behavioral measures are

used to train a model (calibration) to infer subject’s inexperience in real-time. More importantly,

as opposed to many studies where the model is trained and tested on the same pool of subjects,

here, the sensitivity of our fitted model based on subjects’ behavioral data is tested in new sets of

experiments with different subjects (re-construction).

The proposed real-time detection of subjects’ mental states via subjects behavioral pattern

provided a successful starting point for further improving this approach. More importantly, we

provided a series of analysis to re-evaluate the trained model performance in real-time mainly based

on the variability of the classifiers in order to improve the performance of the fitted model.

Results obtained in this dissertation point out many future opportunities in synergistic

human-machine systems, and pave the way toward real-time adaptive machines that can perform

inferences to evaluate the probability of a human error in critical tasks, and can in turn provide a set

of assistance modalities to the humans, with the aim to minimize such errors.

The development of this dissertation research can further be enhanced by exploring addi-

tional research avenues in the future. These directions are summarized next:

Although the power of the statistical analyses used throughout this dissertation seems to

be quite favorable supporting the findings, it also calls for future studies in expanded populations as
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the number of subjects in this study is at the lower limit of running statistical analysis which might

add some uncertainty or variability in statistical analysis results. Specifically, having larger pools

of subjects can help improve the training of the touch behavioral based fitted model, and thereby

improve the efficiency of real-time inference.

The fitted model based on subjects’ behavioral analysis was trained only with very few

finger-stroke features. We can certainly improve the performance of our model by adding more

touch behavior based features. For instance, having a touch screen technology equipped with pres-

sure sensors could provide valuable information. Verifying the methods to better identify human

subjects’ mental states with certain statistical and classification reliability offers opportunities to-

ward building the machine to provide reliable assistance to the subjects.

Finally, we should note that the analysis presented in this dissertation shows strong promise

in further investigating the reverse problem of “how inexperience could possibly be inferred through

affective computing tools and discerned from other dimensions of mental workload.” This scientific

question remains as an open problem to be studied in the future, which can benefit from the results

obtained in this dissertation.
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